Biogeography, landscapes, ecosystems and species of Zaonezhye Peninsula, in Lake Onega, Russian Karelia

Tapio Lindholm, Jevgeni Jakovlev & Alexey Kravchenko (eds.)
Biogeography, landscapes, ecosystems and species of Zaonezhye Peninsula, in Lake Onega, Russian Karelia

Tapio Lindholm, Jevgeni Jakovlev & Alexei Kravchenko (eds.)
Zaonezhye Peninsula has a distinctive and diverse natural heritage, and its unique habitats are included in regional nature conservation plans. Although the value of its habitats and landscapes has been known for a long time, the documentation necessary for the establishment of a protected area has been lacking and high conservation value forests have been threatened by forest logging.

The Barents Protected Area Network (BPAN) project promotes and supports the establishment of a representative network of protected areas in the Barents Region. Protected area networks are an important tool in biodiversity conservation as well as climate change adaptation and mitigation. A representative network of protected areas safeguards biodiversity, supports natural ecosystems and maintains ecosystem services. In addition to evaluating the network of protected areas in Northwest Russia, the BPAN project has implemented pilot projects in high conservation value areas in order to support the establishment of new protected areas.

All the countries in the Barents Region - Russia, Finland, Sweden and Norway - are parties to the Convention on Biological Diversity. In 2010, the parties committed to halting the loss of biodiversity by 2020 and set the 20 Aichi Biodiversity Targets. The Aichi Target 11 calls for at least 17% protection of terrestrial and inland water areas, especially areas of particular importance for biodiversity and ecosystem services, by 2020. Protected areas cover 13.4% of the Barents Region, while the level of protection in the Republic of Karelia is 4.7% (2013). Regional and national conservation plans include 59,400 km² of planned protected areas in the whole Barents Region. However, implementation of conservation plans takes time, and the global targets have been set for 2020. The results of the BPAN project show that the implementation of conservations plans should be quicker and more effective.

In 2012, the BPAN project selected five territories in Northwest Russia where nature conservation was to be promoted through field studies as well as other activities. In the Republic of Karelia, a pilot project was implemented in the high conservation value forests of Zaonezhye Peninsula. Earlier studies on the peninsula showed that the area supported valuable habitats and species. However, even though forests were included in the regional conservation plan, they were at the same time leased by forestry companies and threatened by logging.

Between 2013 and 2014, the BPAN project carried out field work and documented natural values within the planned Zaonezhye nature park, focusing on high conservation value forests. These activities were conducted by the Finnish Environment Institute, Karelian Research Centre and the Directorate of regional protected areas of the Republic of Karelia in cooperation with experts from the Universities of Helsinki and Eastern Finland, and the Finnish Nature League.

This publication presents information on hundreds of red-listed species and valuable habitats. Promoting the protection of high conservation value forests on Zaonezhye Peninsula has been an important part of the BPAN project. We are grateful to all researchers for their valuable input into the field work as well as this publication. For financing this work we thank the Nordic Council of Ministers, Ministry of the Environment and Ministry for Foreign Affairs of Finland, Sweden and Norway, and WWF-Russia.

We hope that this publication contributes to establishing the valuable nature areas of Zaonezhye Peninsula as statutory protected areas.
Contents

Foreword .. 3

Zaonezhye Peninsula – The pearl of Lake Onega .. 7
 - Introduction ... 7
 - Old villages and traditional land use in Zaonezhye ... 9
 - Nature studies in Zaonezhye ... 10
 - Conservation activities in Zaonezhye ... 12
 - Threatened species and proposals for their protection .. 13
 - Acknowledgements ... 14

1 Geology and physical geography of Zaonezhye Peninsula area .. 17
 1.1 Geological description of Zaonezhye Peninsula .. 17
 - Introduction .. 17
 1.2 Geomorphology and Quaternary deposits of Zaonezhye ... 26
 - Introduction .. 26
 1.3 Hydrological characteristics of Zaonezhye Peninsula .. 41
 - Introduction .. 41
 1.4 Soils and their characteristics on Zaonezhye Peninsula ... 53
 - Introduction .. 53
 1.5 Paleogeography of Zaonezhye Peninsula .. 57
 - Introduction .. 57
 1.6 Nature protected areas in Zaonezhye ... 75
 - Introduction .. 75

2 Biomes and biogeography of Zaonezhye Peninsula area .. 81
 2.1 Modern landscapes of Zaonezhye Peninsula .. 81
 - Introduction .. 81
 2.2 Landscape structure of Zaonezhye Peninsula .. 103
 - Introduction .. 103
 2.3 The structure of forest land and forest stands in Zaonezhye Peninsula 111
 - Introduction .. 111
 2.4 Forest structures and human impact on Zaonezhye Peninsula: a classification and case studies .. 125
 - Introduction .. 125
 2.5 Mires of the Zaonezhye Peninsula .. 131
 - Introduction .. 131
 2.6 Meadows in Zaonezhye ... 147
 - Introduction .. 147
3 Flora and fauna in Zaonezhye Peninsula area

3.1 Vascular plant flora of Zaonezhye Peninsula

Introduction .. 153
History of floristic studies on the peninsula 153
The following century ... 155
Recent decades ... 156
Present knowledge .. 160
List of vascular plant species of Zaonezhye, with annotations for threatened and indicator species 164

3.2 Bryophyte flora of Zaonezhye Peninsula

Abstract .. 193
Introduction .. 193
Conclusions .. 198
Appendix List of mosses from Zaonezhye Peninsula .. 200

3.3 List of lichens and allied fungi collected on Zaonezhye Peninsula

History of the studies of lichens in Zaonezhye Peninsula and adjacent islands 207
Acknowledgements .. 209

3.4 Red-listed and indicator lichens of Zaonezhye Peninsula

Introduction .. 223
Material and methods .. 224
Results .. 224
Epiphytes of deciduous trees 224
Usnea lichens and other fruticose epiphytes 226
Epiphytes of spruce .. 227
Lichens on dead wood .. 228
Basic and siliceous cliffs .. 229
Discussion ... 230

3.5 Aphylloroid fungi of Zaonezhye Peninsula

Introduction .. 233
Mycological studies in Zaonezhye Peninsula and adjacent areas 233
Results ... 234
Species confined to pine .. 236
Species confined to spruce 236
Species confined to aspen ... 236
The most noteworthy findings of threatened and rare species of saprophytic fungi 237
Appendix ... 244

3.6 Insect fauna of Zaonezhye Peninsula and adjacent islands

Introduction .. 257
History of entomological studies on Zaonezhye Peninsula 257
Study area and methods .. 258
Results ... 260
Conclusions .. 262
Acknowledgements .. 263
Annotated list of the insect species included in Red Data Book of the Republic of Karelia (Ivanter & Kuznetsov 2007) and other noteworthy insect species 263
List of insect species recorded in Zaonezhye and adjacent islands 275

3.7 Localities in Zaonezhye area used in species lists of vascular plants, bryophytes, lichens, fungi and insects, and their toponyms

Document page .. 357
Лист описания публикации 358
Kuvailulehti .. 359
Presentationsblad ... 360
Introduction

The Republic of Karelia is located mostly in the eastern part of the Baltic shield, which is composed of Precambrian crystalline rock. However, it includes areas that differ markedly in their geological background, soils and vegetation. Zaonezhye Peninsula is a particularly interesting area in terms of the variety of landscapes, habitats and species.

Zaonezhye Peninsula (Zaonezhsky Peninsula; Заонежский полуостров in Russian transcription) is situated on the northwestern coast of Lake Onega. Its eastern shores are washed by the Gulf of Zaonezhye. In the north the peninsula is bordered by Povenetskiy Bay, while to the west it is bounded by Lizhma Bay and the Gulf of Bolshoe Onego (Fig. 1). “Zaonezhye” is used here in a wider sense to include Zaonezhye Peninsula as well as two adjacent peninsulas, Lizhma and Sjar, which are separated by the long and narrow bays of Lake Onega. In the south, Zaonezhye Peninsula shelters an archipelago of numerous islands, also known as Kizhi skerries or the Kizhi archipelago. The archipelago includes two relatively large islands, Bolshoy Klimenetsky and Bolshoy Lelikovsky, which have several old villages, fertile valleys of unique grassland and patches of old-growth forest. The most famous among the islands is Kizhi Island where monumental 17th century churches, included in the UNESCO World Heritage List, are preserved. Often the whole area on the opposite shore of Lake Onega is called Zaonezhye. It is separated from the city of Petrozavodsk by a mere few dozen kilometers of water and has therefore good connections by boat.

Zaonezhye is considered a separate biogeographic region (Ramenskaya 1983). According to modern estimates (e.g. Elina et al. 2010), the territory of Zaonezhye is unique in that it contains nearly every type of terrain and unconsolidated sediment known in the vast expanses of northwest Russia. It is characterized by a high diversity of basic limestone and carbonate rocks that determine the fertility of local soils as well.
as the unique diversity of habitats, flora and fauna. Numerous rare calciphile plant and lichen species are found here, as well as rich, eutrophic wetlands. Long-term farming and animal husbandry have led to a large number of grassland communities in the area. As a result, a mosaic structure of diverse habitats has evolved here. Europe’s second largest lake, Lake Onega, with its clear and deep waters also affect the local climate by making it milder.

Fig.1. Geographical location on Zaonezhye Peninsula
Old villages and traditional land use in Zaonezhye

The late-medieval villages of Zaonezhye Peninsula and the Kizhi archipelago maintained a vibrant rural society until the middle of the 20th century. According to the census of 1887 (Census of population 1904), in the end of the 19th century the population of Zaonezhye Peninsula consisted of 47 000 people. At the time, the population density of the peninsula was at its highest at 13.4 people per km², while the population density of the entire Olonets Province (present-day Republic of Karelia) was only 2.8 people per km². Nowadays most of the villages have been abandoned. However, extraordinary pieces of Russian wooden architecture remind us of their past glory. Many old churches are still standing thanks to summer residents who continue to repair them.

![Fig. 2. Old wooden church in the village of Tambitsy on the southeastern coast of Zaonezhye Peninsula (Photo: Andrei Humala)](image)

The southeastern parts of Zaonezhye Peninsula, together with the northern shores of Lake Ladoga, have the longest history of traditional land use in Karelia. The peninsula has been permanently inhabited for thousands of years. The first traces of pollen of crop plants such as wheat, oat and rye appeared nearly 1 000 years ago (Lavrova et al. 2005). In the past, slash-and-burn-cultivation was the main type of agriculture in Zaonezhye. However, despite a gradual increase in the proportion of cultivated land, a large part of the area has stayed relatively intact. At present, Zaonezhye Peninsula incorporates near-natural landscapes in its central part and areas showing traces of past agricultural activities along the coast of Lake Onega.

The central parts of Zaonezhye Peninsula consist of almost unpopulated ridge landscapes that have not been easily accessible for forestry or agriculture. Contrastingly, lowland areas on the southern and southeastern shores of Zaonezhye Peninsula as well as the islands of the Kizhi archipelago have been profoundly affected by slash-and-burnt cultivation over time. The present distribution of forest types is mainly the result of the earlier human activities. Originally, lowland areas were covered with coniferous forests that were growing in close to optimal conditions and were therefore characterized by their high quality. Nowadays, near-natural coniferous forest stands...
are preserved only in few places where logging is difficult, including paludified areas and steep, rocky slopes close to the shoreline. A part of the preserved old-growth forests is located within the protected belts of water bodies. For example, the protected belt along the shores of Lake Onega is one kilometre wide.

According to the Soviet classification of forests (1943), which was used until the recent Forest Code (2006), forests along water bodies belonged to water protective forest group and were automatically excluded from logging. The rest of the forests have been affected by selective cuttings. Especially close to the villages, these forests have formed naturally on abandoned hay meadows and fields. According to the forest inventory of 1999 (Gromtsev & Krutov 2000), pine and spruce forests occupy nearly 60 percent of the forest cover, in approximately equal proportions. The remaining area is covered by forests, dominated by birch (ca. 30%), aspen (5%) or grey alder (6%).

Intact mires are preserved mainly in the central part of the peninsula where they cover depressions between long and narrow ridges. In lowland areas, numerous small, eutrophic fens occupy narrow bays along the shoreline. In the past, the local population used the lowlands for haymaking. At present these areas combine mire and meadow vegetation, including many red-listed species. However, the hydrology of many mires and brookside forests is affected by the Canadian beaver (*Castor canadensis*), which is relatively common in the area. The native beaver species, *Castor fiber*, has become extinct here.

Nature studies in Zaonezhye

There is a long history of nature studies in Zaonezhye that date back to the 19th century. At that time, Finnish researchers prepared and published detailed lists of plants, lichen (Norrlin 1871, 1876) and beetles (Poppius 1899) that are of international importance. Around the same time, Alexander Günther from Petrozavodsk collected and documented hundreds of plant and insect species that have later been recorded from Zaonezhye also by other researchers (See Chapters 3.1, 3.3 and 3.6). After a long break in the first half of the 20th century, studies resumed first by Finnish researchers in the 1940s and then by the Karelian Research Centre of the Russian Academy of Sciences (hereinafter KRC RAS) in Petrozavodsk.

Until very recently, the flora and fauna of the area have remained largely unexplored. The Atlas of the distribution of vascular plants in northern Europe (Hulten 1971) fails to mention a number of local calciphile and other plants that require fertile soils. There are several scientific publications on the Kizhi archipelago (e.g. Elina et al. 1999, Leshko & Protasov 2005, etc) and the central part of Zaonezhye Peninsula (e.g. Gromtsev 2013). However, the first report on the biodiversity inventories and studies of Zaonezhye (Gromtsev & Krutov 2000) still remains the only publication that covers the entire Zaonezhye Peninsula and the adjacent islands.

Mire and meadow vegetation studies have been conducted during several expeditions of the Laboratory for mire ecosystems of the Institute of biology in the past 30 years. These studies have resulted in the establishment of several nature monuments for the protection of mires. Also new data on mire and meadow vegetation and dynamics have been created (See Chapters 2.5 and 2.6).

Between 2nd and 8th July 2004, leading Finnish and Russian botanists and entomologists carried out the first Finnish-Russian expedition on the “Ecolog” research vessel of the KRC RAS. Its goal was to visit hotspots of rare and threatened plant, lichen and insect species. The expedition included 12 participants: Alexei Kravchenko (vascular plants), Oleg Kuznetsov (mire vegetation), Margarita Boychuk (mosses), Margarita Fadeeva (lichens), Alexei Polevoi and Andrei Humala (insects) from the KRC RAS; Elena
Fig. 3. Intact forest landscapes and mires on Zaonezhye Peninsula and the adjacent areas (after: Kobyakov & Jakovlev (2013), areas visited in 2013 and proposed nature monuments, 1-6.
Gnatyuk from the Petrozavodsk State University (vascular plants), Pertti Uotila and Mikko Piirainen from the Botanical Museum of the Finnish Museum of Natural History in Helsinki (vascular plants); Professor Emeritus Rauno Ruuhijärvi from the University of Helsinki (mire vegetation); Tapio Lindholm (mire vegetation and vascular plants) and Jevgeni Jakovlev (insects) from the Finnish Environment Institute. The following localities were studied:

1. Islands Paleostrov, Rechnoi and Meg-Ostrov near the northern tip of Zaonezhye Peninsula. Different grassland and forest biotopes (old spruce stands, black alder swamps). A large abandoned monastery on Paleostrov Island as well as its old meadows and tree alleys.

2. The southeastern shore of Zaonezhye Peninsula (in the vicinity of the villages of Kuzaranda and Tipintsy) and the islands of Khedostrov, Shunevsky and Yuzhny Oleniy. High-quality spruce forests with *Tilia cordata* in the undergrowth. Yuzhny Oleniy Island is the only island in the area. It is also one of three islands in Karelia that are entirely formed of dolomite.

3. Bolshoi Klimenetsky and Bolshoi Lelikovsky Islands, Cape Radkolye. Old-growth spruce-dominated forests of *Oxalis-Myrtillys* type, spruce mires and forested lowland mires as well as grasslands in previously settled areas. Many regionally rare and threatened species of vascular plants, bryophytes, lichens and insects have been found here.

The members of the expedition concluded that Zaonezhye contains unique biotopes and habitats of threatened species. They recorded a number of vascular plant, bryophyte, lichen and insect species that are considered rare or threatened in the Republic of Karelia and concluded that more detailed research is required.

In the summer of 2013, another international nature expedition was carried out in the southern lowlands of Zaonezhye Peninsula in the framework of the Barents Protected Area Network (BPAN) project. The experts Alexei Kravchenko, Margarita Fadeeva, Andrei Humala, Alexei Polevoi, Boris Rayevsky and Anna Ruokolainen from the KRC RAS, Jevgeni Jakovlev and Kimmo Syrjänen from the Finnish Environment Institute, Timo Kuuluvainen from the University of Helsinki, Olli-Pekka Tikkanen from the University of Eastern Finland and Olli Manninen and Jyri Mikkola from the NGO Finnish Nature League studied natural forests and mires along the southern coast of Zaonezhye Peninsula as well as old-growth forests on Sjar Peninsula on the opposite shore of Lizhma Bay. The expedition aimed to study high conservation value forests (Fig.3) that were identified between 2007 and 2011 within the “Gap analysis in northwest Russia” (Kobyakov & Jakovlev 2013). As a result of this expedition, new nature monuments were proposed (See Fig 3 and Chapter 1.6).

Conservation activities in Zaonezhye

Currently planned protected areas in the Republic of Karelia cover an area of 59 400 km². However, the status of planned protected area alone does not secure nature values. The establishment of protected areas is a long process and in many cases valuable areas have been lost to forestry before the areas have been protected.

In Zaonezhye, conservation activities began between 1965 and 1969. Initially, old wooden buildings of historical interest were transported to Kizhi Island where the Kizhi state open-air museum of history, architecture and ethnography was established.
Later the federal Kizhi zoological nature reserve (Kizhskiy zakaznik) was established (22nd September 1989), based on the recommendations of Tatyana Khokhlova and Oleg Kuznetsov from the Institute of Biology of the KRC RAS. Between 1989 and 1998, ten nature monuments were established in Zaonezhye for the protection of mires (Khokhlova et al. 2000). These regional protected areas cover 1 512 hectares, including Lih Peninsula, and contain both unique and characteristic Eastern European mire ecosystems. They were established on the basis of the recommendations by the Laboratory of mire ecosystems of the Institute of biology of the KRC RAS.

In 1992 KRC RAS produced a feasibility study for the establishment of a nature park with an area of 115 000 ha on Zaonezhye Peninsula (Gromtsev et al. 1992). After detailed field studies, KRC RAS published an assessment of the protected area (Gromtsev 2013). The proposed Zaonezhsky landscape reserve (zakaznik) covers 106 373 ha, of which 86 839 ha is on land. At the same time, the Karelian NGO “SPOK” prepared recommendations for the protection of southern and eastern Zaonezhye Peninsula (SPOK 2013) (See Chapter 2.3).

In the Republic of Karelia, protected areas are created only in accordance with programmes approved by the Russian government. Therefore, planning the establishment of new protected areas is feasible only in cases where such plans are already included in the programmes of the Russian government (protected areas of federal importance: strict nature reserves and national parks) or the government of the Republic of Karelia (protected areas of regional importance: nature parks, nature reserves or zakazniki and nature monuments).

The list of planned protected areas in the Republic of Karelia is a part of the Land use plan of the Republic of Karelia until 2030, approved by the government of the republic (Scheme 2012; directive № 102-P from 6th July 2007). It contains two lists concerning the establishment of new protected areas: The first list includes protected areas that are planned to be established in the first stage before 2020. Regional nature conservation authorities are presented with all necessary background material for the establishment of these protected areas, including detailed information about the area and its borders as well as ecological values, economic and social characteristics, and the proposed protection regime of the planned protected area.

The second list includes perspective new protected areas where red-list species or other natural objects of high conservation value have been recorded. However, the necessary background material for their establishment has not been compiled yet. These protected areas are planned to be established in the second stage between 2020 and 2030.

According to the latest changes to the Land use plan of the Republic of Karelia from July 2014 (Regulation 2014), Zaonezhsky landscape reserve, covering 106 373 ha in the northwestern part of Zaonezhye Peninsula, is included in the list of protected areas to be established before 2020. KRC RAS has prepared the background material necessary for the establishment of this protected area (Gromtsev et al. 2013). Another protected area, Zaonezhye nature park, which has been included in the Land use plan of the Republic of Karelia since 2007, is planned to be established in the second stage between 2020 and 2030. It covers 119 600 ha in the southeastern part of Zaonezhye Peninsula (partly overlapping the Zaonezhsky landscape reserve).

Threatened species and proposals for their protection

There is more than one concept of biodiversity but it is generally accepted that the basic unit of biodiversity is the species. For that reason, biodiversity studies provide the background for conservation. Records of threatened species, included in the Rus-
sian and regional red data books, are therefore of great importance. Establishing new protected areas or expanding existing ones to cover habitats of rare and threatened species is the main legislative tool to protect species and habitats.

During the expeditions, the southeastern lowlands of Zaonezhye Peninsula were identified as important for the conservation of biodiversity. The list of species recorded during these expeditions is impressive: it includes approximately 130 species that are red-listed in the Republic of Karelia (Ivanter & Kuznetsov 2007), more than 100 indicator species of valuable natural forests (according to Andersson et al. 2009) as well as numerous otherwise interesting or rare species, included in international lists of threatened species, such as the IUCN Red List (2014) and the Red Data Book of European Bryophytes (1995), or the 2010 Red List of Finnish species (Rassi et al. 2010). Furthermore, several species of fungi such as *Ganoderma lucidum*, lichens such as *Lobaria pulmonaria* and *Bryoria fremontii* and vascular plants such as *Littorella uniflora*, *Lobelia dortmanna* and *Isoëtes lacustris* are included in the latest Red list of plants and fungi of the Russian Federation (Trutnev 2008). Also, one butterfly species, Clouded Apollo (*Parnassius mnemosyne*), is included in the Red list of animals of the Russian Federation (Danilov-Danilyan et al. 2001). Detailed descriptions of distributions and ecology of threatened species of federal and regional importance are presented in Chapter 3. The identified habitats of these species serve as grounds for the establishment of nature monuments (see Chapter 1.6).

Besides promoting conservation, the purpose of this book is to gather basic knowledge of the nature on Zaonezhye Peninsula and the adjacent islands. This publication consists of 19 articles on paleogeography, geology and geomorphology as well as the soils and hydrology of Zaonezhye Peninsula. It also includes descriptions of the landscapes and main ecosystems in the area, including forests, mires and meadows. In this book we present for the first time full lists of vascular plant, bryophyte, lichen, wood-growing fungi and insect species recorded from the area to date.

Acknowledgements

This book has been prepared owing to great efforts by several researchers from the Karelian Research Centre of the Russian Academy of Sciences as well as the Finnish Environment Institute, Universities of Helsinki and Eastern Finland. We are grateful for all the researchers who took part in the field work and the preparation of this publication. Professor Pertti Uotila from the University of Helsinki has made useful comments about the manuscript. Grigory Sokolov (Petrozavodsk) has translated some of the articles into English and Minna Hartikainen (London) has made linguistic corrections to this work. The maps (Fig. 1 and 3) have been prepared by Denis Dobrynin from the WWF Russia, Arkhangelsk.

The Finnish-Russian working group on nature conservation, chaired by Aimo Saano (Parks & Wildlife Finland, Metsähallitus) and Tapio Lindholm (Finnish Environment Institute), financed the field work in 2004. The field studies in 2013 were implemented by the BPAN pilot project, coordinated by Anna Kuhmonen and Jevgeni Jakovlev (Finnish Environment Institute) in cooperation with the Directorate of regional protected areas of the Republic of Karelia, lead by Denis Maksimov.

This book is prepared and published as a part of the BPAN project, financed by the Nordic Council of Ministers, governments of Finland, Sweden and Norway, and WWF-Russia. This support is cordially acknowledged.

1 Geology and physical geography of Zaonezhye Peninsula area

1.1 Geological description of Zaonezhye Peninsula

Anatoly I. Golubev*, Dmitry V. Rychanchik*, Alexander E. Romashkin* and Alexander K. Polin*

*Institute of Geology of Karelian Research Center of Russian Academy of Sciences, 11 Pushkinskaya St., 185610 Petrozavodsk, Karelia, Russia

Introduction

Geologically, Zaonezhye Peninsula is located in the centre of the synclinorial Paleoproterozoic1 Onega structure, which is referred to by some authors as the Onega trough. It is confined to southeastern Fennoscandian Shield and rests on an Archean2 granite gneiss basement. The basement rocks on the peninsula are not exposed. Most of the igneous (effusive and intrusive) and sedimentary rocks (sandstone, siltstone, argillite and carbonate) of the bedrock were formed between 2300–1800 Ma. In the regional Paleoproterozoic stratigraphy these rocks are situated in the Jatulian (2300 – 2100 Ma), Ludicovian (2100 – 1920 Ma) and Kalevian (1920 – 1800 Ma) superhorizons. The positions of the Zaonezhye Peninsula bedrocks in the stratigraphic column of Karelia are shown in Figure 1.

The relief of Zaonezhye Peninsula is affected by a system of predominantly NW-trending faults. (Lake Onega bays are also elongated NW.) The area is formed of a series of gently dipping synclines3, separated by narrow anticlines4 with steeply dipping limbs. These have resulted in seven different zones of folding and faulting zones on the Peninsula (Bulavin 1999), also described as linear anticlinal uplifts with longitudinal folds and faults (Fig. 2). The Paleoproterozoic geological and tectonic structure of the area as well as the types and chemical and mineral composition of its bedrocks are described in detail in literature (Glushanin et al. 2011, Reading… 2013) and are discussed briefly below.

1 Paleoproterozoic – a period in the Earth’s evolution 2.5 to 1.6 Ga; rocks that formed at that time
2 Archean – a period in the Earth’s evolution older than 2.5 Ga; rocks that formed at that time
3 Syncline – a fold of which the core contains stratigraphically younger rocks; generally concave upward
4 Anticline – a fold, generally convex upward, whose core contains stratigraphically older rocks
Fig. 1. General stratigraphic column of Karelia (black line indicates the position of Zaonezhye Peninsula rocks in the column).
Sedimentary rocks, Jatulian superhorizon, Tulomozero suite. The rocks of the Jatulian superhorizon are the oldest on the Zaonezhye Peninsula. They are only exposed in the centre of the anticlines, which are aligned SE–NW. They occur along the northeast shore of the peninsula and are occasionally encountered as elongated structures along the Tambitsy village-Lake Padmozero line and in the area between Lake Yandomozero and the village of Velikaya Guba. These rocks have also been reported from Yuzhny Oleny Island and northern parts of Svyatukha Bay (Fig. 2).

Fig. 2. Diagram of the geological structure of Zaonezhye Peninsula (made using the maps of Sevzapgeologia (Mikhailyuk et al. 1988), and by USSR Ministry of Geology, PGO Nevskgeologia (Bulavin 1999).
SYMBOLS

- Abalized rocks with mica-carbonate alterations (alkaline-carbonate metasomatic rocks)
- Shuya, Vashezero, Bescovetz and Munovzero suites (Kalevan)
- Volcaniclastic, arkose and calcareous sandstones and siltstones, tuffs, schists and limestones
- Kondopoga, Bescovetz and Pados suites (Kalevan)
- Tuffs, tuff breccia, breccia, siltstone, sandstone, clastics, limestones
- Siusaari suite (Ludicovian)
- Plagioclase and pyroxene porphyrites, picrites
- Zaanjehy suite (Ludicovian)
- Gabro-dolerites, albitic leucogabbro-dolerites of layered sills and intrusive sheets, basalt flows
- Shungite-bearing and shungitic tuff schists, tuffites, dolomites, limestones, shungites, lydites, basalts, andesite-basalts
- Hematite-bearing ("multi-coloured") mica-dolomite schists, schists, dolomites, shungite-bearing siltstones
- Tulomzero suite (Jatulian)
- Algai and other dolomites (with Bulimnia Boreale, etc.), dolomitic sandstones, siltstones, schists
- The basement consists of quartz sandstones with pebbles conglomerates interbeds
- Boundaries of different-aged rock units

Faults, above-fault dislocations:
- established faults
- assumed on the basis of available data

Folding and faulting zones:
1 = Kuzaranda
2 = Tambisa
3 = Nulitsa
4 = Syatukha-Kosmzero
5 = Pigmzero
6 = Unitsa
7 = Lichma (Kedzero)

Oro and ore-bearing formations

- Uraniferous formation in peat
- Copper-uranium-vanadium mineralization with noble-metals in alkaline-carbonate metasomatic rocks, including the subformations:
 - Uranium-vanadium subformation with noble metals in albitic-mica-carbonate metasomatic rocks
 - Gold-copper-uranium formation in albitic-mica chloride-carbonate metasomatic rocks
 - Uraniferous gold-copper formation in albitic-carbonate-chlorite-Quartz metasomatic rocks
 - Uraniferous base-metal-pyrite formation in shungite-bearing rocks

Sites where uranium ore occurrences have been found
- Amphibole-asbestos occurrences
- Copper and cobalt mineralization occurrences of uncertain formation

Numbers of ore deposits and occurrences on the map:
1 - Syatukha, 2 - Yunoi-Gora, 3 - Cherny Navolek, 4 - Vescanevye, 5 - Srednya Padma,
6 - Mednya Yoma, 7 - Verkhnya Padma, 8 - Kosmzero, 9 - Yuzhnoe Kosmzero,
10 - Tsarevskoye, 11 - Velikaya Guba, 12 - Kondoberezskaya, 13 - Nulitsa.
Fig. 3. Mode of occurrence of carbonate rocks, Tulomozero suite, Yuzhny Oleny Island (Photo Vladimir Makarikhin).
Fig. 4. Diagram of the geological structure of South Oleny Island (6): 1 = Quaternary sediments; 2 = red bed-dolomite unit; 3 = limestone-dolomite unit; 4 = stratigraphic boundaries; 5 = fault lines; 6 = quarry contours; 7 = mode of occurrence; 8-15 = organic residue: 8 = Klimetia, 9 = Butinella, 10 = Calevia olenica (Rjab), 11 = Stratifera ordinata Mak., 12 = oncolites, 13 = Kareliana zonata Kor-de, 14 = nodular stromatolites, 15 = Olenia rasus But.
At this level the rocks are dominated by partly marbled dolomite interbedded with limestone, sandstone, phyllite and carbonate breccia. Carbonate rocks contain relics of biogenic stromatolites produced by the vital activity of lower organisms, mainly cyanobacteria, and occur now as carbonate or, occasionally, secondarily silicified deposits with different forms of internal layering. A distinctive feature of the rocks that occur in this part of the geological column is the anomalously heavy isotope composition of carbonate carbon $\delta^{13}C$ (+10 – +18‰, while the isotope composition of carbon in both old and modern carbonates is commonly about 0‰). It should be noted that this anomaly is considered global and carbonates of similar age, displaying the same anomalous isotope composition of carbon, have been reported from several regions of the earth (Melezhik et al. 2005, Melezhik et al. 2010, Reading...2013).

The largest exposures of Tulomozero carbonate rock can be found on South Oleny Island (with the area of 0.7x2.5 km), which lies 12 km east of Kizhi Island. It is a unique area of geological and archaeological significance (Makarikhin 1992) where quarries and other land use have exposed calcareous-dolomitic rocks that contain an abundance of organic fossils (stromatolites and microphytolites) dating back circa 2 Ga. The carbonate rock deposits are up to 70 m thick, dipping SW and making up the...
limb of the NW-trending anticline. In the limb, rocks exhibit small-scale dome-shaped folding. Limestone is commonly confined to the cores of the dome-shaped folds, whereas dolomite constitutes the fold arches. In addition, accumulated dolomite displays small-scale plication (Fig. 3). These rocks have been described in detail in several publications and geological guidebooks (Sokolov & Butin 1961). V.V. Makarihkin and G.M. Kononova (1983) provide the most complete and detailed description of the organic fossils. Bedding patterns and spatial relationships of rocks and organic fossils (old algae) can be seen in the rock exposures on the northeast shore of the island and in the quarry walls in the northern and central parts of the island (Fig. 4). On the southwest shore of the island, one can learn more about limestone kilning carried out before 1956 near the Main Quarry where fragments of two furnaces, filled with raw material for kilning, and other traces of past activities have been preserved (Fig. 5).

The extensive evidence obtained in the last few years shows that the rocks of the Tulomozero suite were formed in an evaporative environment (in a hot, dry climate). Examples include carbonate pseudomorphs, lesser talc and quartz pseudomorphs after gypsum, nodular and cloud-like (chicken-wire) deposits typical of gypsum aggregates (Fig. 6), carbonate beds after gypsum deformed locally by the volumetric effects of gypsum-anhydrite transitions and scarce pseudomorphs after cubic and skeletal halite (rock salt) crystals. Carbonate breccia, which often occurs in this layer, has some features indicating that they have been produced as a result of collapsed salt karst (Melezhik et al. 2005).

![Fig. 7. Rock salt (halite) with anhydrite inclusions (light and grey). Core sample from the Onega Parametric Borehole. The sample is about 5 cm wide.](image)

![Fig. 8. Brecciated krivozerites. Lower Zaonezhye subsuite, Svyatukha Bay of Lake Onega (Photo Vladimir Makarikhin).](image)

5 Pseudomorph is a mineral whose outward crystal form is that of another mineral species; a pseudomorph is described as being after the mineral whose outward form it has, e.g. limonite after pyrite, quartz after fluorite, etc.).
Fig. 9. Krivozerite of the Lower Zaonezhye subsuite, core sample from the Onega Parametric Borehole. The sample is about 8 cm wide.

Fig. 10. Brecciated maksovite, Berezovets Island (Photo Vladimir Makarikhin).

Fig. 11. Maksovite pebble beach, Berezovets Island (Photo Vladimir Makarikhin).
Geomorphology and Quaternary deposits of Zaonezhye

At this level the rocks are dominated by partly marbled dolomite interbedded with limestone, sandstone, phyllite and carbonate breccia. Carbonate rocks contain relics of biogenic stromatolites produced by the vital activity of lower organisms, mainly cyanobacteria, and occur now as carbonate or, occasionally, secondarily silicified deposits with different forms of internal layering. A distinctive feature of the rocks that occur in this part of the geological column is the anomalously heavy isotope composition of carbonate carbon $\delta^{13}C (+10 – +18\%o$, while the isotope composition of carbon in both old and modern carbonates is commonly about $0\%o$). It should be noted that this anomaly is considered global and carbonates of similar age, displaying the same anomalous isotope composition of carbon, have been reported from several regions of the earth (Melezhik et al. 2005, Melezhik et al. 2010, Reading...2013).

The largest exposures of Tulomozero carbonate rock can be found on South Oleny Island (with the area of 0.7x2.5 km), which lies 12 km east of Kizhi Island. It is a unique area of geological and archaeological significance (Makarikhin 1992) where quarries and other land use have exposed calcareous-dolomitic rocks that contain an abundance of organic fossils (stromatolites and microphytolites) dating back circa 2 Ga. The carbonate rock deposits are up to 70 m thick, dipping SW and making up the limb of the NW-trending anticline. In the limb, rocks exhibit small-scale dome-shaped folding. Limestone is commonly confined to the cores of the dome-shaped folds, whereas dolomite constitutes the fold arches. In addition, accumulated dolomite displays small-scale plication (Fig. 3). These rocks have been described in detail in several publications and geological guidebooks (Sokolov & Butin 1961). V.V. Makarikhin and G.M. Kononova (1983) provide the most complete and detailed description of the organic fossils. Bedding patterns and spatial relationships of rocks and organic fossils (old algae) can be seen in the rock exposures on the northeast shore of the island and in the quarry walls in the northern and central parts of the island (Fig. 4). On the southwest shore of the island, one can learn more about limestone kilning carried out before 1956 near the Main Quarry where fragments of two furnaces, filled with raw material for kilning, and other traces of past activities have been preserved (Fig. 5).
The extensive evidence obtained in the last few years shows that the rocks of the Tulomozero suite were formed in an evaporative environment (in a hot, dry climate). Examples include carbonate pseudomorphs, lesser talc and quartz pseudomorphs after gypsum, nodular and cloud-like (chicken-wire) deposits typical of gypsum aggregates (Fig. 6), carbonate beds after gypsum deformed locally by the volumetric effects of gypsum-anhydrite transitions and scarce pseudomorphs after cubic and skeletal halite (rock salt) crystals. Carbonate breccia, which often occurs in this layer, has some features indicating that they have been produced as a result of collapsed salt karst (Melezhik et al. 2005).

The presence of salt-bearing and sulphate beds in this part of the column is indicated by the so-called “grandfather’s salt pits”, located two kilometres north of Velikaya Guba. Salt-rich water accumulates in these man-made pits, which are about 2x2 m in size. Slightly altered sulphate and salt rock beds have been found also at a depth of 2.5-3 km during the drilling of the Onega parametric hole near Ulitina Novinka, Kondopoga District, west of the Onega Peninsula (Fig. 7).

Ludicovian superhorizon, Trans-Onega suite. On the Zaonezhye Peninsula the Trans-Onega suite consists of exposed sedimentary, volcanic-sedimentary and volcanogenic rocks. A characteristic feature of these rocks is the presence, from several percent to dozens of percent, of organic matter (shungite) (Filippov et al. 2007). These exposures are confined to the limbs of the anticlines. The Trans-Onega suite falls into two subsuites, lower and upper, that differ in their mineralogical composition.

Rocks of the lower subsuite occur as narrow bands in the northern and southern parts of the peninsula. These bands consist of sandstone, siltstone and argillite interbedded with arenaceous dolomite. In the lower subsuite horizontal bedding is predominant. Occasionally, siltstone and argillite interbeds contain up to 3% (mass) of organic matter. The lower subsuite is characterized by the presence of clay-carbonate and carbonate-clay (marl) rocks with distinctive microrhythmic lamination often referred to in literature as krivozerite (Fig. 8, 9). They occur in all known examples of the lower subsuite of the Zaonezhye suite and can be used as a good marker horizon.

In Zaonezhye, the upper subsuite rocks are far more common than the lower subsuite rocks. However, they are also confined to the limbs of NW-trending anticlines. All the rocks in this subsuite are enriched in various amounts of organic matter (shungite) and are therefore dark gray or black. Their organic matter content varies from less than 1 per cent to 70% (mass). The subsuite consists of dark-gray and black tuffaceous-sedimentary and sedimentary rocks bearing sand-, silt- and pelite-sized shungite with carbonate interbeds and predominantly dolomite lenses, often including disseminated sulphide. Also, lenticular, dome-shaped structures with elevated carbon concentrations (at least 20% mass) are encountered in this part of the geological column (Melezhik et al. 2004). This type of rock, often referred to in literature as maksovit (Fig. 10, 11), is now being quieried near the Tolvuya in northeastern Zaonezhye Peninsula. It is used predominantly as a substitute for metallurgic coke but is also commonly used in medicine and as an absorbent in water-purification filters (Filippov et al. 2007).

The rock horizon, referred to in literature as the shungite-lydite-dolomite complex, is well defined in this part of the column of the Paleoproterozoic Onega structure (Melezhik et al. 2009). It is formed of alternating dolomite, lydite and shungite-bearing rock beds (lenses). Dolomite commonly contains organic matter between crystals and within the cores of rhomboid grains. Lydite is a hard dark-gray to black cherty...
rock that contains 1-5% (mass) organic matter. There have been attempts to use these rocks as touchstone, but they have been found too fractured and brecciated. The shungite-lydite-dolomite complex also contains veins of metamorphosed natural bitumens known as anthraxolite (Fig. 12, 13).

Practically all the lithotypes of sedimentary rocks in this layer of the column contain fossilized organic remnants such as carbonate rocks – Litophyta (stromatolites and microphytolites); terrigenous, mainly pelite-sized rocks known as acrotarchs; cherty rocks such as styriolite and microfossils; and shungite-bearing rocks termed chemofossils (Makarikhin & Kononova 1983).

Kalevian superhorizon, Kondopoga suite. These bedrock exposures cover a large area of up to 10 km wide bands of synclines with gently dipping limbs, extending from southeast to northwest. The column of the Kondopoga suite is a flyschoid sequence in which terrigenous rocks of different particle sizes and mineral compositions (conglomerates, gravelstone, sandstone, siltstone and argillite) are interbedded monotonically to form rhythms, varying from several centimetres to tens of metres in thickness, that are dominated by sedimentary rocks of different particle sizes. Occasionally, also thin carbonate intercalations, lenses and concretions are encountered.

Conglomerates are confined to the base of the elementary rhythms and occur more in the lower part and less in the upper part of the Kondopoga suite. Sandstones are divided into greywacke and polymictic types, depending on their composition. These stones are light gray to dark gray in colour and display parallel, horizontal and minor undulating cross-bedding. Siltstones are predominantly dark gray to black. The incorporated clasts consist of quartz, feldspar, fine-grained chlorite aggregates and lesser carbonates. Argillites are dark gray to black in colour, with a brownish shade, and they are commonly interbedded with siltstone. Like siltstones, argillites display well-defined horizontal and parallel bedding. Also diastems, current folds and intrastratal faults are occasionally encountered.

Rocks of the Kondopoga suite are characterized by the presence of organic matter (several per cent), which imparts a dark colour to the terrigenous sedimentary rocks (Fig. 14). The suite also contains lens-shaped (oblate) anthraxolite aggregates up to dozens of centimeters in diameter and up to 5 cm in thickness.

Cyanobacterial (Cyathotes nigoserica Mak.) buildups in terrigenous rocks have been found in the carbonaceous siltstone of the Kondopoga suite. These buildups are morphologically similar to mud cracks and current ripple marks, although different in other features (Makarikhin & Kononova 1983).

Kalevian superhorizon, Munozero suite. In the central part of the study area, near Lake Munozero, the bedrock of the Munozero suite is exposed. This is the core of the Munozero syncline. The lower part of the suite consists of dark-gray clastic limestone with thin siltstone and argillite intercalations. The calcite content of these rocks varies from 30 to 80%. The upper portion of the suite contains gray arenaceous dolomite with chert intercalations, siltstone, quartz-feldspathic sandstone with carbonate matrix and arkose. Dolomite commonly displays fine undulation and oblique lamination.

Microphytolites of the genus Glebosites (Reitl.) have been found in limestone and oncites of the genus Osagia (Twenh.) have been reported from dolomite (Makarikhin & Kononova 1983).

7 Touchstone – a black, flinty stone, such as a silicified shale or slate, whose smooth surface was formerly used in testing the purity or fineness of alloys of gold and silver by comparing the streaks left on the stone by rubbing with the metal with the streaks left by an alloy of predetermined composition.

8 Diastem – a relatively short interruption in sedimentation, with little or no erosion before deposition is resumed.

9 Anthraxolite – natural bitumen at the metaanthracite stage of coalification.
Igneous rocks, mineralogeny and commercial minerals of Zaonezhye Peninsula

On Zaonezhye Peninsula volcanic rocks can be found in numerous basaltic lava flows and sheets. These dark-gray rocks were produced by volcanic activity (Fig. 15, 16). As a result of paleovolcanological studies of Zaonezhye, areas subjected to the most active volcanism have been identified and described. Lava flows, varying from 5–7 m to 35–40 m in thickness, are divided into fine-grained varieties at the base, medium- and coarse-grained varieties at the centre and fine-to medium-grained amygdaloidal varieties at the top. Rocks in these lava flows are fairly homogeneous in their petrographic composition, texture and structure. Predominantly, basalts consist of fine plagioclase laths and isomorphic tabular pyroxene in strongly chloritized matrix. Commonly the amygdales are filled with chlorite, lesser quartzite and quartz. Flow bedding at the top of lava flows is characterized by an abundance of chlorite and chlorite-calcite amygdales, extending as “layers” for dozens of metres along the strike. Ore minerals are represented by pyrite and leucoxenized titanomagnetite and lesser chalcopyrite. Brecciation is occasionally observed at the top of the lava flow; hydrothermal quartz-calcite veins and veinlets evolve in these zones. Due to the highly hematized (oxidized) lava in the area, the colour of its rocks is often brown. Gabbro-dolerite sills represent sub-volcanic rocks. In composition these rocks are identical to lava deposits but differ in their degree of recrystallization and, hence, structure (Golubev & Svetov 1983). Gabbro-dolerite sills form at least 40–45 m thick structures with distinct crystallization, from fine-grained varieties at the margins to coarse-grained and occasionally pegmatoid varieties at the centre of the structure. The rocks are dark gray to brown in colour and fairly dense, often forming a conspicuous relief of high scarps or ridges. They are easily traceable for dozens of kilometres along the strike, folding together with host rocks.

The volcanic breccia on Radkolye Point in the Zaonezhye Peninsula is fairly exotic. The relics of the Radkolye volcanic edifice were mapped in 1972 during paleovolcanological studies on the southwestern shore of Bolshoi Lelikovsky Island (Svetov & Golubev 1978). Due to erosion, only a small portion of the volcanic neck is preserved. Eruptive channel rocks can be found in rocky scarps at its northeastern and southern endocontacts, while its entire western and northern parts are under the Lake Onega water level. The preserved part of the volcanic neck is described as a rocky, two-peaked roches moutonnée created by the glacier. It is 8–10 m higher than the surrounding rocks (Fig. 17). Morphologically, the volcanic neck is a round body, presumably about 200 m in diameter.

The base of the volcanic structure on Radkolye Point consists of volcanogenic sedimentary-effusive rocks of the Zaonezhye volcanic complex. It forms a gently dipping syncline with a well-exposed northeastern limb that extends along the southwestern shore of the island. On the island the volcanogenic structure forms a series of narrow and gently dipping anticlines and synclines elongated towards northwest. In southeastern parts of the island, effusive rocks are crosscut by coarse- to medium-grained gabbro-dolerite sill that forms a sheeted body, folded with host rocks. The fold axes generally plunge northwest.

Direct contacts between the neck and the host rocks of the Zaonezhye suite have only been reported from its southern parts, while in the rest of the area the contact zone is buried under deluvial piles of rocks and unconsolidated Quaternary sediments. Near the water’s edge, in the steep scarp located in the southern endocontact zone, vertically dipping eruptive breccia cuts gently dipping basaltic lava. The rough contact surface can be traced for over several metres. In both cases, the contact plane dips steeply north to northwest at about 80–85°.
Coarse clastic rocks, morphologically similar to the eruptive breccia described above, have been encountered 3.5 km northwest of Point Radkolye, on one of nameless islands of the Lambinskie Islands. The various rocks of the peninsula are a treasure trove for nature lovers.

Semi-quantitative and quantitative spectral analyses were carried out to study minor elements and their concentrations in the mineralogical composition of the rocks. In addition these analyses determined the genesis, conditions of formation and the position of horizons where nonferrous metals may occur. All the above rock varieties contain low concentrations of ore-bearing elements, carbonate and cherty (lydite-like) rocks containing the lowest concentrations. However, certain elements are confined to certain rock varieties in certain structures, indicating geochemical specialization (Golubev et al. 1984).

Ore-bearing elements of nonferrous metals are present in carbonaceous rocks mainly as sulfides. Although all the rocks of the Zaonezhye suite are contaminated with sulfides, ore matter is confined to second-member rocks, i.e. shungitic tuffites. Depending on the metamorphic grade, ore mineralization is of the pyrite type and ore matter is either pyrite or pyrrhotite. Formation of pyrite with smaller quantities of chalcopyrite, sphalerite and pyrrhotite is characteristic of greenschist facies. Sulfides occur as beds, lit-par-lit intrusions, pockets, concretions, globules, coating around rock and mineral fragments, veins and veinlets. Conditions during their formation determine the mineralization of primary sedimentary and metamorphogenetic-hydrothermal ore in mineralized schist.

Spectral and chemical analyses have shown that the ores contain Zn, Ni, Co and Cu as well as smaller quantities of Ag, Mo, Pb and Au. Nonferrous metal concentrations are at least one order of magnitude higher in concretions than in host tuffites with lit-par-lit ore injections. Studies of sulphide mineralization have shown that Cu, Co, Ni, Zn, Pb, Ag and Au are concentrated in secondary sulphide redistribution during epigenesis and metamorphism.

Pyrrhotite mineralization is not characteristic of the carbonaceous rocks in the Onega trough. Pyrrhotite is formed when fine-grained pyrite is recrystallized into massive pyrite interbeds. It also occurs in tectonically active zones where graphite is formed instead of shungite and pyrite is replaced by pyrrhotite.

Volcanic emanations during the three phases of Zaonezhye volcanism are the source of ore matter in Karelian carbonaceous rocks. The hydrothermal field of the most active second phase of Zaonezhye volcanism has been identified by facies and paleovolcanological reconstructions in the active submarine volcanic area of the Onega trough. In the Zaonezhye suite column, this zone consists of shungite rocks as well as overlying shungite tuffs that are most likely to contain nonferrous metals. Among other evidence, correlation between ore-forming processes and volcanic events, sheeted shapes of ore bodies, preserved primary structures of rocks and ores as well as the pattern of sulphide mineralization suggest that ore-forming processes were similar in the black shales of the Zaonezhye complex and the Baltic Shield (Golubev et al. 1984).

Clearly the geochemical characteristics of the study area are affected by structural dislocation and faulting zones, to which complex Cu-U-Mo-V ore deposits are confined. These zones contain from elevated to anomalous concentrations of Cu, Co, Ni, Cr, Zn, Mo, Bi, Au, Ag, Se, Pt, Pd as well as other elements. Ore-forming processes are indicated mainly by near-fault sodium metasomatism, micatization and the above spectrum of anomalous element concentrations. Ore-forming processes are determined by axial faults and shear zones, as well as alternating dolomite, siltstone, schist, basalt and gabbro-dolerite deposits of considerably different physical, mechanical and geochemical properties. Structural dislocation and fault zones are described in detail in A.V. Bulavin’s monograph “Metallogeny of Karelia” (Bulavin 1999).
For commercial mining, most promising are the ore-bearing deposits associated with the formation of uranium, noble metal and vanadium in structural dislocation and faulting zones. Such deposits occur in the Kosmozero, Padma and Shulginovskoe ore fields in the Onega Ore Province of the Onega-Belozero mineralogenic zone. During the past few decades Nevskgeologia GGP has discovered vanadium-rich deposits in Srednyaya Padma, Tsarevskoe, Vesennye, Verkhnyaya Padma and Kosmozero as well as other deposits in metasomatised rocks - the carbonaceous siltstone and schist occurring at the base of the Zaonezhye suite of the Ludicovian superhorizon. The total reserves of vanadium pentoxide in the Onega Ore Province, including prospective reserves of all deposits and occurrences, are estimated at 556 000 tons. Most of these deposits (C1+C2 resources of 332 500 tons), are concentrated in the active reserves of the Padma and Kosmozero ore fields (Bulavin 1999).

Fig. 13. Anthraxolite, village of Shunga.

Fig. 14. Mode of occurrence of Kondopoga suite rocks, Nigozero quarry (Photo Vladimir Makarikhin).
Fig. 15. Contact between globular-pillow lava (above) and silty sandstone (below). Lambas-Ruche (Photo Vladimir Makarikhin).

Fig. 16. Globular-pillow unit in lava, Lambas-Ruche (Photo Vladimir Makarikhin).
Fig. 17. Diagram of the geological structure of the Radkoila volcanic edifice (14): 1 = plagioclase-pyroxene basalt dykes; 2 = eruptive breccia; 3 = globular-pillow basalt lava; 4 = basalt lava-breccia; 5 = amygdaloidal basalt; 6 = massive chilled basalt; 7 = cluster of amygdales in basalt flows; 8 = tuff siltstone and tuffaceous siliceous schist; 9 = tuffaceous sandstone; 10 = flow direction; 11 = mode of occurrence (a – bedding, b – jointing); 12 = dominant exposure contours; 13 = geologic boundaries (a – assumed, b – traced); 14 = cliff scarps; 15 = sulphide mineralization zones.
REFERENCES

1.2 Geomorphology and Quaternary deposits of Zaonezhye

Tatyana S. Shelekhova

Institute of Geology of Karelian Research Center of Russian Academy of Sciences, 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
E-mail: shelek@krc.karelia.ru

Introduction

The geomorphology and Quaternary deposits of Zaonezhye Peninsula have been described extensively in literature (Biske et al. 1971, Lukashov et al. 1993, Demidov & Lavrova 2000, Lukashov 2000, Demidov 2005 a,b,c, Demidov 2006, Shelekhova 2013). Zaonezhye is a unique area that has no equivalent in Karelia, or Russia. The mosaic structure of its crystalline basement and the diverse composition of its bedrock are responsible for its highly rugged topography. The unique tectonic structure of Zaonezhye, together with the multiple advances of glaciers and the distinctive evolution of the area after ice retreat gave rise to genetically and compositionally diverse Quaternary rock complexes and unique landforms – the basis for the biologically diverse landscapes of today.

Precambrian crystalline rocks are covered by thin Quaternary deposits, formed from rocks carried by the last Scandinavian ice sheet during the Late Valdai glaciation (Fig. 1.). Holocene peat, lake, seismogravitational aeolian and alluvial sediments occur locally. Considerable variations in altitude (up to 100 m) are due to the alternation of narrow NW-trending selkä ridges and interridge depressions occupied by lakes, deep bays and bogs. Older Quaternary deposits may have been preserved in these depressions and, if found, should be further studied.

Glacial deposits, consisting of moraine covering highly weathered and fractured Precambrian rocks, are widespread in the area. The most common glacial deposits are gabbro-dolerites, crosscut by at least 3–5 m deep fractures. Since fractured gabbro-dolerites are less resistant to glacial exaration, the resulting moraine consists of coarse local clasts. There are two types of moraine in Zaonezhye. Type I is formed of bedrocks poorly resistant to glacial exaration, such as gabbro-dolerite or slightly fractured and mildly weathered schist, occurring in a rugged relief. Coarse clasts make up 85–90% of this local moraine, produced by the destruction and short-distance redeposition of local bedrocks. The distance of glacial transport varies from hundreds of metres to several kilometers. Coarse clastic fractions (> 1 cm) account for at least 40–50%. Type II is schistose moraine, containing 25–40% of coarse clasts, composed of granite, granite-gneiss and other rock clasts. It has been transported by the glacier from the Onega-Segozero watershed and it rests on either bedrock or local coarse clastic moraine. In sand fractions, quartz dominates over feldspar. These deposits are better
sorted than the moraines of Type I. Up to 25–30% of clasts have been transported for over dozens of kilometres. The petrographic, mineralogical and chemical composition of the moraine depends completely on the mineralogical composition of the basement rock. It varies in thickness from dozens of centimeters on top of selkä ridges to 3–10 m in depressions between the selkäs. In spite of its sandy and sandy loam composition, the moraine displays poor filtrating properties. As a result, such areas are paludified.

Fluvioglacial deposits consist of well-sorted sand, gravel, pebble and sand. These deposits form esker ridges, fluvioglacial deltas and debris cones that indicate the locations of major glacial meltwater systems and periglacial lakes resulting from the deglaciation of the area. Fluvioglacial deposits include 10–15 m thick deposits resting on moraine and bedrock, displaced and folded by the movements of the ice margin. Also esker ridges and abraded fluvioglacial deltas occur. The mineral and petrographic composition of the fluvioglacial deposits reflects the bedrock and moraine from which they have been derived.

Lacustrine-glacial deposits are widespread in Zaonezhye and consist of periglacial Lake Onega sediments, including seasonally accumulated varved clay and sandy-silty sediments. As a result of the melting ice sheet as well as the irregular glacial isostatic adjustment of the earth’s crust, most of Zaonezhye Peninsula was flooded by the periglacial Lake Onega. During this time, water levels reached altitudes of 100–110 m in northern parts and about 80–90 m in southern parts of the peninsula. Varved clay, unaffected by the washout caused by the stadial drop in the Lake Onega water level in late and post-glacial times, is encountered in topographic lows at altitudes below 50–60 m. In some lakes, e.g. Lake Isaevo, the top of the varved clay lies at an absolute altitude of 80 m. Clay, varying from dozens of centimeters to 7–10 m in thickness, rests on moraine and is often confined to distal portions of fluvioglacial deltas (Glinyanoe bog near the village of Bor Pudantsev). Continuous varved clay beds, covering an area of more than 1–2 km², are known from southeastern shores of Lake Kosmozero, south of the village of Lambasruchei, and from the bottoms of all large lakes of Zaonezhye Peninsula. Due to its poor filtration properties and water resistance, clay contributes to the paludification of the area. The mineral and chemical composition of varved clay depends on the composition of the bedrock and the overlying moraine (Demidov 2000, 2005).

Lacustrine deposits, consisting of sand, loamy sand and pebble, occur on the shores of Lake Onega at an absolute altitude of 50–60 m. Lacustrine deposits form short beaches, aggradation terraces (Peski special landscape area on the southwest shore of Lake Padmozero) and beach barriers (Lambasruchei). There are also small beaches, composed of older fluvioglacial sand and gravel deposits on the shores of Ladmozero, Vanchozero, Padmozero and other lakes.

Sediments are accumulated at the bottom of numerous lakes and bays where glacial lacustrine varved clay is covered by a ca. 3-m-thick layer of homogeneous gray silt, followed by sapropel and sometimes diatomites. Organic deposits can be up to 7 m thick (Nizhneye Myagrozero). Also bog iron ore (limonite) has been encountered at the bottom of some lakes. Bottom sediments in lakes located near large-scale paleoseismic dislocations in bedrocks, such as Lake Putkozero and Svyatukha Bay, display folding caused by post-glacial earthquakes.

Post-glacial earthquakes have also produced seismocolluvial deposits, consisting of coarse clastic talus and collapse. Seismocolluvial deposits occur on a limited scale and are confined to big cliffs of tectonic origin. Some seismic collapses are up to 100 km wide and 10 m thick, extending 2 km.

Peat-bog deposits fill up paludified interridge depressions of tectonic origin, which in the past would have formed 2–4 km long and 200–400 m wide lakes or bays with their shores. Peat-bog deposits consist of woody-grass and grass lowland peat that
varies from several metres to over 8 m in thickness. In some lakes, grass and grass-moss bogs occur as floating mats.

Aeolian deposits consist of well-sorted fine-to medium-grained sand and occur as small, narrow strips on lakeshores.

As the river network is young and poorly developed, alluvial deposits consist of coarse clastic sand-pebble streambed alluvium.

Geomorphology

Zaonezhye has a highly diverse relief. Denudation, tectonic, glacial and fluvioglacial landforms are common. Folding and faulting of crystalline rocks as well as intense neotectonic movements have affected the present-day relief of Zaonezhye. Old structural forms are responsible for the morphology and orientation of elementary surfaces. Elevated surfaces are elongated and exposed, with an orientation parallel to fold and fault structures. Multiple tectonic movements have formed a distinctive, obsequent relief in Zaonezhye. The obsequent relief is a result of the geological structure of Zaonezhye caused by wide-open synclines and narrow, heavily deformed anticlines that are interrupted by longitudinal faults. Synclines form elevated ridges and mountain massifs with relatively high plateaus, while anticlines form valleys occupied by rivers or lakes. Confined to some of the anticlines are structurally complex folding and faulting zones that host uranium-vanadium-rare metal deposits and occurrences (Bilibina et al. 1991). In parts of Zaonezhye Peninsula, individual crustal blocks have been scattered vertically along the faults as a result of neotectonic movements. Therefore, the Zaonezhye relief can be divided into three tiers: upper tier with an absolute altitude of 107–147 m; middle tier with an altitude of 60–100 m; and lower tier with an altitude of 33–60 m (Lukashov 2000). Topographically Zaonezhye can be subdivided into western and eastern parts as well as the elevated Svyatukha Bay – Lake Putkozero watershed.

Western Zaonezhye is an elevated massif with a highly rugged surface. Its highest surfaces are narrow, elongated ridges. These linear ridges are 1.6–14 km long and 0.6–1.4 km wide with 5–40 m high scarp-like slopes. Lake basins occupy piedmonts and lowlands. There is a distinctive pattern of topographic tiers: The upper tier occupies the largest area with altitudes of up to 147 m, while the middle and lower tiers form narrow strips at the rims of the elevated massif. Boundaries between these tiers consist of a series of step-like scarps and steep slopes. Western Zaonezhye is characterized by high vertical (67–101 m) and horizontal ruggedness due to the rugged shoreline of Lake Onega basins and bays. There are few river valleys, although lake basins are common. Crystalline rocks occur over a large area. There are no unconsolidated Quaternary sediments, therefore crystalline rocks are covered by a 1–2 cm layer of modern eluvium. In topographic depressions, such as the Lake Kosmozero – Unitsa Bay basin, crystalline rocks are covered by a 1.5–3 m layer of moraine. There is an esker ridge here with a delta extending northwest.

Eastern parts of Zaonezhye Peninsula differ substantially from its western parts. There is no upper tier in the relief, while its middle and lower tiers form extensive structures, rather than narrow strips. In southeastern parts of the peninsula, the middle tier occupies an area of about 380 km². Its highest surfaces are located at an absolute altitude of 60–100 m. Vertical ruggedness varies from 44 to 60 m. The middle tier consists of a plain with gently sloping flat-topped ridges without a well-defined foot of the hill. These ridges are 2.8–16.4 km long, 0.8–2.0 km wide and up to 5–15 m high. They are separated by large 1.5–2.5 km wide and 5–10 km long depressions with a flat bottom and indistinct boundaries. The lower and middle tiers cover roughly equal areas, while the lower tier is confined to the coastal zones of the peninsula.
This type of relief is most common in the northern parts of Zaonezhye Peninsula, near Padmozero and Tolvuya villages. In southern parts of Zaonezhye Peninsula, the lower tier is found near Lake Yandomozero. In general, Southern Zaonezhye is characterized by gently undulating plains with gently sloping, poorly defined ridges and bars. Watersheds are located at an absolute altitude of 60 m and vertical ruggedness is 6–18 m. The hydrographic network of eastern Zaonezhye is markedly different from western Zaonezhye. There are only two large lakes here, Putkozero and Padmozero, but river systems are more developed. Crystalline rocks of eastern Zaonezhye, unlike those of western Zaonezhye, are almost completely covered by a 6–10 m thick layer of Quaternary rocks. The middle tier is dominated by moraine, formed of boulder and loamy sand, as well as fluvioglacial esker ridges and deltas, formed of sand, gravel and pebble. In the lower tier, sand, silt and clay form lacustrine-glacial and lacustrine plains.

The elevated Svyatukha Bay – Lake Putkozero watershed represents a typical tectonic-denudation selkä landscape, completely lacking Quaternary deposits or covered by up to 1-m-thick moraine. The thickness of the moraine increases to at least 10 m in depressions between selkäs, where it is often covered by varved clay, glacial lacustrine loamy sand or inequigranular sand. Tectonic scarps and seismonicullivu debris cones surround western and eastern parts of the watershed. These cones are up to 2 km long chaotic piles of sharply angular blocks, which vary in size from dozens of centimeters to 5 m along the long axis (e.g. Mount Zimnyaya, Mount Gorodok, Mount Sypun and the Paltega area).

Near Unitsa Bay, towards Kazhma-Velikaya Guba, the area is traversed by fluvioglacial systems of esker ridges and deltas, composed of a circa 20–30 m thick layer of sand and gravel, that extend from northwest to southeast and from north to south near Padmozero-Tipinitsy and Gankovskoe-Kuzaranda. Glacial lacustrine sediments such as varved clay, loamy sand and sand occur along the shores of large lakes and in topographic depressions at absolute altitudes below 70 m. In Velikaya Guba, Yandomozero and Glinyanoe Mire near the village of Bor Pudantsiev, varved clay is 6–7 m thick. Beaches, consisting of pre-Holocene fluvioglacial sand and gravel deposits, stretch along the shores of Lakes Ladmozero and Vanchozero.

REFERENCES

Saarnisto, M., Grönlund, T. & Ekman, I. 1995. Late Glacial of Lake Onega - contribution to the history of the eastern Baltic basin. – Quaternary international 27:111–120.
Fig. 1. Quaternary deposits of Zaonezhye Peninsula (Demidov 2005, with minor changes).
1.3 Hydrological characteristics of Zaonezhye Peninsula

Alexander V. Litvinenko* and Maria S. Bogdanova*

*Institute of Water Problems in the North of the Karelian Research Center of Russian Academy of Sciences,
50 Alexandra Nevskogo St., 185003 Petrozavodsk, Karelia, Russia
Corresponding author: Alexander V. Litvinenko
E-mail: litvinenko@nwpi.krc.karelia.ru, aleks-litvinenko@mail.ru

Introduction

The first fragmentary information about the rivers and lakes of Zaonezhye was obtained in the 1920s and 1940s. In the early 1960s, hydrographic studies of Zaonezhye were carried out by the water problem unit of the Karelian Branch of the USSR Academy of Sciences (now the Institute of Water Problems in the North, Karelian Research Center of Russian Academy of Sciences, KarRC, RAS), including integrated field studies and the first cartographic analysis of the area. The results of the studies were published in the “Problems in the hydrology, limnology and water management of Karelia” (1965) and the “Catalogue of Karelia’s Lakes” (Grigoryev & Gritsevskaya 1959) as well as a handwritten catalogue of Karelia’s Rivers. Today most of this data is outdated. Morphometric information about the Zaonezhye water bodies has subsequently been presented in the “Catalogue of Karelia’s Lakes and Rivers” (Filatov & Litvinenko 2001).

Hydrochemical studies and bottom sediment analyses were carried out as part of monitoring Zaonezhye lakes and rivers in 1991 and between 1999 and 2001. Nevertheless, there is little information available about water bodies in the region. Due to the lack of hydrometeorological stations on Zaonezhye Peninsula, there are no reliable data on the hydrological regimes of the rivers and lakes.

Results

Geological structures and the relief of the peninsula define the distinctive hydrographic network of Zaonezhye. Alternating long, narrow ridges and long, narrow depressions characterize the topography. Nowadays Lakes and Lake Onega bays (Unitsa, Svyatukha, Lzhma, Velikaya and Keften bays) occupy these depressions (Litvinenko 2000). Practically all the basins are elongated from northwest to southeast. Zaonezhye covers an area of 1900 km². According to inventories conducted in 1950s (Grigoryev & Gritsevskaya 1959), there are 251 lakes in Zaonezhye, covering a total area of 212 km² (Freindling & Polyakov 1965). The ratio of total lake surface to
drainage area in Zaonezhye is about 12%. However, recent inventories have shown even greater values.

The water bodies of Zaonezhye differ considerably in their morphometric and hydrological indices. Most of them are formed by tectonic subsidence, glacial tectonics or other glacial processes (Freindling & Polyakov 1965). Water area of the water bodies varies from less than 0.01 to 30 km\(^2\). Commonly the basins are highly elongated, sometimes dozens of kilometers long and no more than several hundred metres wide. The index of elongation (ratio of length of the lake to width of the lake) can be up to 43.5 (Lake Kosmozero). Extremely elongated lakes are relatively uncommon, occurring only in northern Scotland, northwestern England (Camberland Plateau) and northwestern Central Siberia (Putoran Plateau) (Semyonov 1993).

The deepest lakes in the study area are Lakes Ladmozero (52 m) and Putkozero (42 m), which form cryptodepressions, i.e. their maximum depth is below sea level (Semyonov 1993).

Because the lake basins in Zaonezhye are typically small, also their watershed values (ratio of basin area to lake area) are low. A specific watershed value describes the volume of solid, liquid and ionic runoff supplied into the water body as well as the amount of heat supplied by tributaries. Therefore it reflects the effects of the watershed on all processes in the water body (Litvinenko 2000). This is a small effect, also indicated by the low water exchange index (ratio of volume of long-term average lake runoff to lake volume), which varies from one year to 10 years (Freindling & Polyakov 1965).

Despite the predominantly tectonic origins of the lake basins and the complex structures of the lake bottoms, littoral zones, mainly occupied by solid sand and gravel sediments with clay lenses, are relatively well developed. Ore deposits mixed with mud are confined to deep layers (Vlasova 1965, Belkina 2005).

The thermal conditions of water bodies are different. Shallow lakes are warmer during the summer months (up to 25° C) when temperatures in their bottom layers may be only 2–3°C colder than the surface layer, whereas deep lakes remain thermally stratified during the summer months: their surface layer may warm up to 26° C while the bottom layer has temperatures of 8–10° C (Semyonov 1993).

Apart from southeastern Zaonezhye, which is dominated by small streams, the hydrographic network is relatively uniform over the entire area. There are only few small rivers on the peninsula. According to inventories in the mid-20th century, there were 56 rivers in Zaonezhye (each over 2 km long) with a combined length of 594 km. Their lake zones were 113 km long. Small rivers and creeks (which are less than 5 km long) make up only 11% of the length and 37% of the number of the rivers. Longitudinally, most streams have a terraced profile, which is most pronounced in the rivers Kuloma, Muna, Putka and Pigmozerka (Nature park…1992). The terraces are formed of rapids, or groups of rapids, separated by deeper slow portions of the rivers.

The hydrographic network of the peninsula is characterized by lake and river systems whose linear ratio of lake area length to total length of the system can be as high as 70%.

The distribution of river runoff throughout the year is affected considerably by the physical and geographical characteristics of Zaonezhye, especially the high ratio of lake surface area to drainage area of the basins as well as the linear ratio of lake surface area to drainage area of the river and lake systems. As the ratio of river area to drainage area decreases, the amount of spring floods declines and the amount of runoff during low-water periods increases. Spring flooding in rivers begins in the second third of April. In rivers with a high ratio of river area to drainage area, spring floods last for 70–100 days, whereas in small rivers flooding continues for 50–70 days. Usually there is one peak runoff during the floods.

In rivers minimum runoff occurs twice a year: during the summer-autumn and winter low-water periods. On average, the long-term minimum runoff for a 30-day period is
over 5 l/s*km² during the summer-autumn low-water period and 2–3 l/s km² during the winter low-water period. It increases to 4–5 l/s*km² in rivers with a high ratio of river area to drainage area (Surface water resources… 1972 a).

The distinctive hydrochemical characteristics of Zaonezhye include elevated mineralization (occasionally up to several hundred mg/l), alkalinity and nutrient supply. There are also low concentrations of predominantly autochthonous organic substances in lakes, but high concentrations in rivers (Maslova 1965, Kharkevich 1965, Startsev 1993, Present condition… 1998; Lozovik et al. 2005).

The hydrographic network of Zaonezhye, including the planned Zaonezhsky landscape reserve (zakaznik) is described in more detail in Litvinenko & Bogdanova 2013. In the present paper we discuss the southeastern and southern parts of the area that have not been described previously.

We have divided the study area into four hydrographic regions (Table 1). Lakes form the basis of the hydrographic network. As shown in the 1:50 000 map below, there are 101 water bodies, covering a total area of 1007 km², located in their entirety in the study area (Fig.1).

Table 1. Suggested hydrographic regions.

<table>
<thead>
<tr>
<th>Hydrographic region</th>
<th>Total lake area, km²</th>
<th>Ratio of lake area to drainage area, %</th>
<th>River network density, m/km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Zaonezhye Peninsula</td>
<td>813</td>
<td>7.2</td>
<td>237</td>
</tr>
<tr>
<td>II Lel Peninsula</td>
<td>119</td>
<td>0.3</td>
<td>361</td>
</tr>
<tr>
<td>III Lizh Peninsula</td>
<td>32</td>
<td>9.9</td>
<td>81</td>
</tr>
<tr>
<td>IV Syar Peninsula</td>
<td>43</td>
<td>9.0</td>
<td>356</td>
</tr>
<tr>
<td>Total</td>
<td>1007</td>
<td>6.6</td>
<td>252</td>
</tr>
</tbody>
</table>

Fig. 1. Water bodies in the study area (lakes are numbered in Table 2).
Table 2. Major lakes in the study area.

<table>
<thead>
<tr>
<th>Number in Fig. 1</th>
<th>Name of the lake</th>
<th>Lake area, km²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number in Fig. 1</td>
</tr>
<tr>
<td>I. Zaonezhye Peninsula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Varezh</td>
<td>0.086</td>
</tr>
<tr>
<td>2</td>
<td>Munozero</td>
<td>0.040</td>
</tr>
<tr>
<td>3</td>
<td>Korbozero</td>
<td>2.000</td>
</tr>
<tr>
<td>4</td>
<td>Kalozero</td>
<td>0.021</td>
</tr>
<tr>
<td>5</td>
<td>Yandomozero</td>
<td>30.654</td>
</tr>
<tr>
<td>6</td>
<td>Korytovo</td>
<td>0.005</td>
</tr>
<tr>
<td>7</td>
<td>Limozero</td>
<td>0.625</td>
</tr>
<tr>
<td>8</td>
<td>Glukhoye</td>
<td>0.007</td>
</tr>
<tr>
<td>9</td>
<td>Palevskoye</td>
<td>0.454</td>
</tr>
<tr>
<td>10</td>
<td>No name</td>
<td>0.002</td>
</tr>
<tr>
<td>11</td>
<td>No name</td>
<td>0.002</td>
</tr>
<tr>
<td>12</td>
<td>Keratskoye</td>
<td>1.969</td>
</tr>
<tr>
<td>13</td>
<td>Kalye</td>
<td>0.033</td>
</tr>
<tr>
<td>14</td>
<td>Gahkozero</td>
<td>0.125</td>
</tr>
<tr>
<td>15</td>
<td>No name</td>
<td>0.004</td>
</tr>
<tr>
<td>16</td>
<td>No name</td>
<td>0.016</td>
</tr>
<tr>
<td>17</td>
<td>No name</td>
<td>0.003</td>
</tr>
<tr>
<td>18</td>
<td>Palozero</td>
<td>0.261</td>
</tr>
<tr>
<td>19</td>
<td>No name</td>
<td>0.003</td>
</tr>
<tr>
<td>20</td>
<td>Matveyevo</td>
<td>0.007</td>
</tr>
<tr>
<td>21</td>
<td>No name</td>
<td>0.004</td>
</tr>
<tr>
<td>22</td>
<td>Degtozero</td>
<td>0.030</td>
</tr>
<tr>
<td>23</td>
<td>No name</td>
<td>0.002</td>
</tr>
<tr>
<td>24</td>
<td>Driskozero</td>
<td>0.038</td>
</tr>
<tr>
<td>25</td>
<td>No name</td>
<td>0.019</td>
</tr>
<tr>
<td>26</td>
<td>Koryukhozero 3</td>
<td>0.018</td>
</tr>
<tr>
<td>27</td>
<td>Shibrozero</td>
<td>0.232</td>
</tr>
<tr>
<td>28</td>
<td>No name</td>
<td>0.077</td>
</tr>
<tr>
<td>29</td>
<td>Kalgozero</td>
<td>0.008</td>
</tr>
<tr>
<td>30</td>
<td>Palozero 4</td>
<td>0.034</td>
</tr>
<tr>
<td>31</td>
<td>Savozero</td>
<td>0.010</td>
</tr>
<tr>
<td>32</td>
<td>No name</td>
<td>0.006</td>
</tr>
<tr>
<td>33</td>
<td>Koryukhozero 2</td>
<td>0.082</td>
</tr>
<tr>
<td>34</td>
<td>Palozero 3</td>
<td>0.060</td>
</tr>
<tr>
<td>35</td>
<td>Maloye Khmelozero</td>
<td>0.250</td>
</tr>
</tbody>
</table>
In the study area, the ratio of lake surface area to drainage area is 6.6 %, which is much lower than the average for Karelia (12 %) or the estimate for the Onega and Ladoga lake area in Karelia (21 %) (Litvinenko et al. 1998). Most of the water bodies (93%) are small or very small (lambas), covering an area of less than 1 km². Only seven water bodies are large. The largest lakes are Chuzhmozero (6.2 km²), Gahkozero (5.3 km²), Bolshoye Khmelozero (4.0 km²), Syargozero (2.4 km²), Pivgozero (3.2 km²) and Keratskoye (2.0 km²).

Lake Yandomozero is the largest lake on Zaonezhye Peninsula with a surface area of 30.1 km². It is 11.4 km long. Its maximum width is 4.3 km and its average width is 2.6 km, whereas its maximum depth is 6.0 m and its average depth is 4.3 m. Its shoreline is 47.5 km long. The water volume of the lake is 130 M m³. The Lake Yandomozero basin is of glacial origin. Its slopes are low and gradual and its bottom is smooth. The littoral zone of the lake consists of sand and gravel, whereas brown mud is common in the central part of the bottom.

The study area is joined by three relatively large lakes: Putkozero (surface area 21.1 km²), Kosmozero (20.6 km²) and Padmozero (10.0 km²). The southern parts of Lake Putkozero border the study area in the northeast. Lake Putkozero has a surface area of 21.1 km². It is 24.2 km long with a maximum width of 2.1 km and an average width of 0.9 km, as well as a maximum depth of 42.0 m and an average depth of 15.6 m. The water volume of Lake Putkozero is 330 M m³ and the shoreline extends 62.4 km. The lake basin is a deep elongated depression formed by tectonic subsidence. Generally its slopes are steep or moderately steep and up to 20 m high. However, in the western parts of the lake steep slopes can be up to 40–50 m high. The lakeshores are elevated and predominantly stony, or occasionally rocky. There are 16 islands on Lake Putkozero that cover an area of 0.38 km². The bottom of the lake has a mildly rugged relief. Underwater the slope is mostly steep. In the littoral zone, rocky and sandy ground is common, while muddy ground with small quantities of clay, sand and ore are common in the deep.
The southern parts of Lake Kosmozero adjoin the western boundary of the study area. Lake Kosmozero has a surface area of 20.6 km². It is 30.9 km long with a maximum width of 2.1 km and an average width of 0.7 km as well as a maximum depth of 25.0 m and an average depth of 7.8 m. Its shoreline is 76.6 km long. The lake basin is also formed by tectonic subsidence. Its slopes are 50–80 m high, steep in the west but low (15–20 m) and gradual in the east and southeast. In the north, the slopes are low and paludified. The shores are predominantly gently sloping and their height varies. There are 10 islands on the lake that cover a total area of 0.56 km². The bottom of the lake is rugged. A deep groove extends across the entire lake. The bottom is muddy in the deep but argillaceous or rocky in the shallow zone. Bog ore is encountered occasionally.

The study area is also adjoined by the eastern shore of Lake Padmozero. The lake has a surface area of 10.0 km². It is 10.1 km long with a maximum width of 2.0 km and an average width of 1.0 km as well as a maximum depth of 14.9 and an average depth of 4.0 m. The water volume of the lake is 40.0 M m³ and its shoreline is 24.7 km long. Glacial tectonic processes have formed the Lake Padmozero basin. Its slopes are predominantly steep. Most of the slopes are about 10 m high, although the highest slopes are up to 20 m high. Most of the lakeshores are low and rocky, although some shores are gently sloping. The bottom of Lake Padmozero is an elongated depression with a predominantly muddy ground, apart from the sandy and muddy littoral zone. The lake is deepest in its northern parts. (Surface water resources...1972 b).

In the study area, the average density of the river network is 252 m/km², varying from 81 to 361 m/km² in parts of the river network (Table 1). It consists of small rivers and creeks as well as short tributaries between lakes. Watersheds of major water systems are shown in Fig. 2 and their basic characteristics are described in Table 3. The largest streams are the rivers Kalei (25.9 km), Padma (24.9 km), Tambitsa (22.1 km) and Putka (21.2 km). Practically all the river basins have been affected by human activities, long-term agricultural development (1960–1980), land reclamation and clear cutting in particular. As a result, there have been changes in their water regimes. The Putka, Padma and Kalei river basins are most heavily affected, while the Tambitsa and Tsarevka river basins are least affected by human activities.
Fig. 2. Major streams in the study area (Major river watersheds are numbered in Table 3).

<table>
<thead>
<tr>
<th>Name of the river</th>
<th>Number of the drainage area in Fig. 2</th>
<th>Name of the drainage area (recognized source)</th>
<th>River mouth</th>
<th>Drainage area, km²</th>
<th>River length, km</th>
<th>Height of source, m asl</th>
<th>Height of mouth, m asl</th>
<th>Stream gradient, m/km (‰)</th>
<th>Ratio of lake surface area to drainage area, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limozenka</td>
<td>I</td>
<td>Putka Lake Limozero</td>
<td>Polevskoye</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blizhnyaya</td>
<td>I</td>
<td>Putka Mire Polevskoye</td>
<td>Polevskoye</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirovsky Creek</td>
<td>I</td>
<td>Putka Lake Bolshoye Khmelozero</td>
<td>Lake Putkozero</td>
<td>5.3</td>
<td>119.6</td>
<td>37</td>
<td>15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putka</td>
<td>I</td>
<td>Putka Lake Keratskoye</td>
<td>Lake Onega</td>
<td>231.7</td>
<td>21.2</td>
<td>54.6</td>
<td>33</td>
<td>1.02</td>
<td>16.2</td>
</tr>
<tr>
<td>No name</td>
<td>I</td>
<td>Putka Lake Kondozero</td>
<td>Lake Putkozero</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No name</td>
<td>I</td>
<td>Putka Lake Korihozero</td>
<td>Putka</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chugmuksa</td>
<td>II</td>
<td>Chugmuksa Lake Chzhozero</td>
<td>Lake Onega, Svyatukha Bay</td>
<td>39.7</td>
<td>2.3</td>
<td>56.9</td>
<td>33</td>
<td>10.47</td>
<td>32.3</td>
</tr>
<tr>
<td>No name</td>
<td>III</td>
<td>Lake Vilozero Lake Degtozero</td>
<td>Lake Onega, Svyatukha Bay</td>
<td>29.9</td>
<td>16.1</td>
<td>148</td>
<td>33</td>
<td>7.13</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Table 3. Major rivers in the study area.
<table>
<thead>
<tr>
<th>Pigmarya</th>
<th>IV</th>
<th>Padma</th>
<th>Padamokh mire</th>
<th>Lake Onega</th>
<th>109.5</th>
<th>24.9</th>
<th>72.4</th>
<th>33</th>
<th>1.58</th>
<th>10.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsarevka</td>
<td>V</td>
<td>Tsarevka</td>
<td>mire</td>
<td>Lake Onega, Karguba Bay</td>
<td>46.5</td>
<td>10.2</td>
<td>60</td>
<td>33</td>
<td>2.66</td>
<td>0.00</td>
</tr>
<tr>
<td>Sarandzha</td>
<td>V</td>
<td>Sarandzha mire</td>
<td>Tsarevka</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalei</td>
<td>VI</td>
<td>Kalei</td>
<td>Kalei</td>
<td>Lake Onega, Tolvuya Bay</td>
<td>85.5</td>
<td>25.9</td>
<td>92.6</td>
<td>33</td>
<td>2.30</td>
<td>0.8</td>
</tr>
<tr>
<td>Kurgilov</td>
<td>VII</td>
<td>Tambissa</td>
<td>mire</td>
<td>Tambissa</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tambissa</td>
<td>VII</td>
<td>Tambissa</td>
<td>mire</td>
<td>Lake Onega, Rechnaya Bay</td>
<td>103.2</td>
<td>22.1</td>
<td>72.7</td>
<td>33</td>
<td>1.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Nulitsa</td>
<td>VIII</td>
<td>Nulitsa</td>
<td>mire</td>
<td>Lake Onega, Tipnitsy Bay</td>
<td>28.4</td>
<td>9.2</td>
<td>61.6</td>
<td>33</td>
<td>3.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Koreshruchei</td>
<td>IX</td>
<td>Koreshruchei</td>
<td>mire</td>
<td>Lake Onega, Tipnitsy Bay</td>
<td>16.1</td>
<td>4.0</td>
<td>46</td>
<td>33</td>
<td>3.22</td>
<td>0.00</td>
</tr>
<tr>
<td>Jandoma</td>
<td>X</td>
<td>Jandoma</td>
<td>Lake Jandomozero</td>
<td>Lake Onega</td>
<td>119.9</td>
<td>4.0</td>
<td>42.4</td>
<td>33</td>
<td>2.32</td>
<td>27.3</td>
</tr>
<tr>
<td>No name</td>
<td>XI</td>
<td>Lake Palozero</td>
<td>mire</td>
<td>Lake Onega, Svystukha Bay</td>
<td>9.1</td>
<td>6.5</td>
<td>150</td>
<td>30</td>
<td>18.37</td>
<td>4.1</td>
</tr>
<tr>
<td>No name</td>
<td>XII</td>
<td>Lake Kosmozero – Onega</td>
<td>Lake Kosmozero</td>
<td>Lake Onega, Svystukha Bay</td>
<td>104.1</td>
<td>1.1</td>
<td>38.4</td>
<td>33</td>
<td>4.75</td>
<td>22.4</td>
</tr>
<tr>
<td>Karasozero-ka (Matnichnyi)</td>
<td>XII</td>
<td>Lake Kosmozero – Onega</td>
<td>Lake Kara- sozero</td>
<td>Lake Kosmozero</td>
<td>7.5</td>
<td>98</td>
<td>38.4</td>
<td>7.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sudma</td>
<td>XIII</td>
<td>Sudma</td>
<td>mire</td>
<td>Lake Onega, Velikaya Bay</td>
<td>18.8</td>
<td>8.6</td>
<td>45</td>
<td>33</td>
<td>1.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Antonovshchina</td>
<td>XIV</td>
<td>Antonovshchina</td>
<td>mire</td>
<td>Lake Onega, Velikaya Bay</td>
<td>28.3</td>
<td>4.8</td>
<td>50</td>
<td>33</td>
<td>3.52</td>
<td>1.3</td>
</tr>
<tr>
<td>Leirechka</td>
<td>XV</td>
<td>Leirechka</td>
<td>Lake Leikozero</td>
<td>Lake Onega, Velikaya Bay</td>
<td>27.5</td>
<td>11.4</td>
<td>86.4</td>
<td>33</td>
<td>4.70</td>
<td>6.0</td>
</tr>
<tr>
<td>Chernyj</td>
<td>XVI</td>
<td>Ust-Reka (Lake Matkozero)</td>
<td>Lake Nizhneye Konozero</td>
<td>Ust-Reka (Lake Matkozero)</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ust-Reka (Lake Matkozero)</td>
<td>XVI</td>
<td>Ust-Reka (Lake Matkozero)</td>
<td>Lake Matkozero</td>
<td>Lake Onega, Vegoruksa Bay</td>
<td>61.1</td>
<td>8.3</td>
<td>47.5</td>
<td>33</td>
<td>1.74</td>
<td>1.3</td>
</tr>
<tr>
<td>Pizhei</td>
<td>XVII</td>
<td>Pizhei</td>
<td>Pizhei</td>
<td>Lake Onega, Velikaya Bay</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No name</td>
<td>XVII</td>
<td>Vegoruksa</td>
<td>Lake Vegoruksa</td>
<td>Lake Onega, Velikaya Bay</td>
<td>17.4</td>
<td>8.6</td>
<td>55.5</td>
<td>33</td>
<td>2.62</td>
<td>1.4</td>
</tr>
<tr>
<td>No name</td>
<td>XIX</td>
<td>Lake Vekhkozero</td>
<td>Lake Vekhkozero</td>
<td>Lake Onega</td>
<td>6.4</td>
<td>5.9</td>
<td>68.7</td>
<td>33</td>
<td>6.07</td>
<td>0.9</td>
</tr>
<tr>
<td>Vozhmarila</td>
<td>XX</td>
<td>Vozhmarika</td>
<td>mire</td>
<td>Lake Onega, Vozhmarika Bay</td>
<td>19.0</td>
<td>10.8</td>
<td>105.2</td>
<td>33</td>
<td>6.68</td>
<td>0.05</td>
</tr>
<tr>
<td>No name</td>
<td>XXI</td>
<td>Lake Vegoruksa</td>
<td>Lake Vegoruksa</td>
<td>Lake Onega, Bolshaya Luhemskaya Bay</td>
<td>26.4</td>
<td>1.8</td>
<td>38.2</td>
<td>33</td>
<td>0.11</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Thus, the hydrographically distinctive Zaonezhye Peninsula is a particularly picturesque area even by Karelian standards. However, due to its high ratio of lake surface area to drainage area, its relatively low drainage density and its diversity of water bodies, the area is particularly sensitive to human impact. Therefore, a strictly protected area is urgently needed on Zaonezhye Peninsula.

REFERENCES

Fig. 3. Lake Bolshoe Khmelozero (Photo Maria Bogdanova).

Fig. 4. Lake Kovshozero (Photo Maria Bogdanova).
Fig. 5. Lake Korytovo (Photo Maria Bogdanova).

Fig. 6. Puska River (Photo Maria Bogdanova).
Fig. 7. Spirovsky Creek (Photo Maria Bogdanova).
Introduction

The soil cover of Zaonezhye Peninsula is very distinctive. It differs considerably from other parts of Karelia due to the unique nature of the region. Soil patterns are mainly determined by a variety of landforms, including high, narrow ridges that alternate with narrow depressions. The macrorelief is also responsible for the climatic conditions in the area: Zaonezhye is protected against northerly winds, which makes its climate milder than in adjacent areas. The unconsolidated Quaternary sediment cover, produced by glacial abrasion, is either thin or completely absent. Soil-forming rocks are represented mainly by basic bedrocks, such as gabbro-diabase and amphibole, overlain by Leptosols and Cambisols (World reference base.. 2006). Due to widespread shungite schist and schist-enriched moraine, the soils are regionally and globally unique.

Soil types and their characteristics

The first definition of soils on shungite-bearing, soil-forming rocks was proposed by the academic F.Yu. Levinson-Lessing (Levinson-Lessing 1889) who named them “Olonets black soil”. Their place in the Russian soil classification (1997, 2004) as well as in international soil classifications remains a subject of debate. Some researchers consider them as soils with well-developed sod-forming processes, which is inaccurate for several reasons. First, sodden soils develop under meadow plant communities, whereas virgin soils on shungite-bearing rocks are formed under forest vegetation with decomposed mull litter. Secondly, in sodden soils humus typically accumulates in the sod horizon and its content in the underlying horizons decreases abruptly. However, in soils formed on shungite-bearing rocks, humus can be traced to a great depth in the profile and occasionally its concentration at the boundary with parent rock can be up to 2%. Thirdly, in the taiga zone, sodden soils are formed in an acid environment, whereas soils resting on shungite-bearing rocks are developed in neutral or subacid environments. Some researchers classify soils formed on shungite
rocks as lithogenic. However, this is also inaccurate since biological processes in these soils are vigorous. Thus, their place in soil classification remains uncertain.

Shungite-bearing rocks include shungite and shungite schist deposits as well as glacial and aqueo-glacial deposits. These deposits have different mechanical compositions but all contain a high percentage of black coaly shale, which gives them their black colour. As a soil-forming rock, shungite differs markedly from other parent rocks in its high carbon and hygroscopic moisture content. It also has a high absorptive capacity due to the presence of fine-grained carbon. The carbon content of shungite rocks varies between 5% and 95%; the higher the carbon content, the more intensely the rocks are eroded and weathered and the higher the mineral nutrient content of the soil. The mechanical compositions of soil-forming rocks are highly diverse, including gravelly sand, loamy sand, loam and fine clay. The silica content (of particles over 1 mm in diameter) can be over 80%.

Genuine shungitic soils are common in areas covered by shungite eluvium-deluvium and shungitic moraine. With increasing distance from shungite deposits, the shungite content of moraine decreases and the moraine acquires a composition in which basic and shungite rocks are mixed with silicate rocks in equal proportions. Shungitic soils are common in such areas. These soils are darker and less acidic than Cambisols. They are also enriched with iron and mineral nutrients. Shungitic soils are usually combined with poorly developed Leptosols that are confined to slopes and podzolised Albic Cambisols, occupying low landforms.

Soils on shungite-bearing rocks are formed under forest vegetation, dominated by small-leaved forests and a well-developed grass cover. Despite large quantities of plant residues accumulating at the surface, thick forest litter does not form due to the high biological activity of soil animals and microorganisms. Due to the characteristics of the soil-forming rocks as well as the accumulation of plant residues, there is a distinctive pattern of organic soil profile with a high percentage of humus and a homogenous composition of organic matter throughout the soil profile. Despite a high percentage of crushed stone and high water permeability of soils on shungite rocks, humic acids are fixed in the soil profile. This is due to the distinctive chemical composition of the soils, containing low silica and high iron and calcium oxide concentrations. These form strong polymeric complexes with humic acids. The low mobility of organic-mineral complexes in soils formed on shungite-bearing rocks has led to the formation of a texturally undifferentiated profile where organic matter and mineral mass are transformed in situ without the migration of substances beyond the soil boundary.

Thus, the main processes that form the above soils are humus formation under neutral or slightly acid environmental conditions and the in situ metamorphism of mineral mass with the release of iron, calcium and other oxides. These soil-forming processes are not characteristic of Karelian soils but their occurrence in Zaonezhye is due to unique natural conditions.

Primitive soils, combined with Leptosols, are common where crystalline rocks are either exposed or occur near the earth’s surface. Primitive soils are subdivided into crustal, organic (sodden, humus, peaty) or detrital soils depending on the degree of soil-forming process. In primitive soils, the layer of unconsolidated material is no more than 10 cm thick and consists of crystalline rock eluvium. Diabase eluvium, which is common in Zaonezhye, contains a large amount of iron (up to 20%) and calcium. Because the unconsolidated sedimentary cover is thin, these soils are poorly fertile. Open pine forests with suppressed growth occupy these soils. In parts of their distribution, they also grow juniper brushwood (alvars).

Leptosols are formed on flat ridge tops or terraced slopes that provide favourable conditions for the accumulation of crystalline rock eluvium and eluvium-deluvium.
These soils often grow moderately dense pine stands with grass in the undergrowth. Also juniper brushwood is occasionally encountered. The soil profile consists of A0-AhBfm-BC-M horizons. The AhBfm horizon displays features characteristic of humus-illuvial and metamorphic horizons. It is hard to divide these soils into genetic horizons because they contain large amount of rocks and crushed stone (particle content varies between 50 and 90%). The entire profile of these soils is saturated with humus.

Podzols are typical of Karelia but scarce in Zaonezhye, which is due to the polymictic composition of unconsolidated sediments that contain considerable quantities of boulders, crushed stone as well as coarse basic and intermediate rocks. Also the abundance of mixed and deciduous open woodland, with a well-developed grass cover, contributes to the accumulation of humus.

The podzolic soils of Zaonezhye are characterized by the poor eluvial-illuvial distribution of silicon, the presence of aluminium and iron oxides along the profile as well as the accumulation of organic elements (phosphorus, calcium, manganese, potassium, magnesium and sulfur) in the forest litter. However, the mineralogical composition of soil-forming rocks has affected the chemical composition of the soils. As a result, almost all of the soils contain much less silica than average in Karelia. These soils are also enriched with iron and often calcium, which has decreased soil acidity. Therefore, podzolic soils with a humus-accumulating horizon (A1) and a low level of podzolization are more common in Zaonezhye than podzols.

Histic Podzols are formed on poorly drained plains and in wide depressions, composed of silicate sand and loamy sand, where ground water is near. Normally there is peat-saturated forest litter for at least 10 cm or a 10–30 cm thick peaty horizon. These soils are highly acidic, particularly in the upper part of the profile, and they have a low base saturation. Therefore, the soils are poorly fertile.

Peaty soils are formed in deep depressions and lows between ridges under moisture-loving vegetation. In these conditions there is excess moisture and, therefore, the mineralization of plant residues is delayed. Fibric Histosols occupy only a small area in Zaonezhye. They are more common in watershed areas composed of silicate moraine, aqueo-glacial sand and loamy sand. Terric Histosols occur in areas where basic crystalline rocks are widespread. There, they occupy mires in old lake basins without outflow, ravines and at the foot of the slopes.

Conclusions

Zaonezhye consists of diverse areas. The soil contours are clearly aligned from southeast to northwest throughout the area. The distinctive feature of soil cover in Zaonezhye is its unique dark soils formed on carbonaceous rocks (shungite) or glacial deposits that are not encountered in other parts of the world. Although soils formed on shungite-bearing rocks have attracted the attention of many researchers who have described physical, chemical and biological soil properties in their publications, many issues remain poorly understood. Also, their place in soil classification is unclear. Considering that shungite-bearing rocks are highly diverse in their chemical composition and abundance in Quaternary deposits, the genesis of these soils is still largely unknown.

LITERATURE

World reference base for soil resources. 2006.
Mesic grassland in Zaonezhye Peninsula: Gymnadenia conopsea among Melampyrum nemorosum (Photo Tapio Lindholm).
1.5 Paleogeography of Zaonezhye Peninsula

Lyudmila Filimonova* and Nadezhda Lavrova**

*Institute of Biology of Karelian Research Center of Russian Academy of Sciences, Petrozavodsk.
11 Pushkinskaya St, 185910 Petrozavodsk, Karelia, Russia
Corresponding author Lyudmila Filimonova
E-mail: filimonovaluda@mail.ru
Tel: +79535444890

** Institute of Geology of Karelian Research Center of Russian Academy of Sciences,
11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
E-mail: lavrova@krc.karelia.ru
Tel.: +79214545451

Introduction

Zaonezhye Peninsula juts out into Lake Onega, occupying central parts of its northern coast. It is a unique area of diverse Quaternary sediments. Diverse in composition and distribution of the complexes of Quaternary deposits are a result of the complex structure of the crystalline basement, the composition of bedrocks as well as the Late Pleistocene and Holocene evolution. The distribution of Quaternary sediments forms the basis of modern landscapes and biodiversity on the peninsula.

Major relief-forming factors include glacial activity and denudation of surface horizons in Precambrian crystalline rocks. A combination of these factors has resulted in two genetically different landforms: 1) forms composed of crystalline rocks and 2) forms consisting of Quaternary rocks of different genesis (e.g. glacial and glaciofluvial accumulative relief).

The topography of Zaonezhye Peninsula can be divided into two parts: eastern and western. The eastern part is a moraine plain with gently sloping hills. It is a relatively flat area 30–60 m above lake level with paludified depressions separated by gently sloping ridges. The western part of Zaonezhye Peninsula displays a typical selkä relief with a system of NW-trending ridges at an altitude of up to 120 m above lake level. Ridges have steep, stepped slopes and steep scarps. Narrow lake basins and the Lake Onega bays occupy depressions between the ridges. Elevated sites are either covered with thin moraine, or completely devoid of Quaternary sediments. All glacial and aqueoglacial deposits on Zaonezhye Peninsula reflect the composition of the bedrock, eroded by glaciers (Lukashov & Ilyin 1993). Local moraines are widespread on shungite schis and rich in carbon, potassium, nitrogen and trace elements such as Cu, V, Ni, Zn and B. These elements are easily assimilated by plants, thus providing substrate for shungitic “black earth (chernozem)”, one of the best soil types for agriculture in Karelia.
The topographic characteristics and the composition of Quaternary deposits determine the plant biodiversity of Zaonezhye Peninsula.

Vegetation dynamics have been reconstructed from the Allerød period (~11800 BP) to the present based on palynological, macrofossil and radiocarbon data for the lacustrine deposits of the Lake Putkozero cross-section from central Zaonezhye Peninsula (Lavrova 1999, Demidov & Lavrova 2000) as well as from lake-mire deposits of the Zamoshye and Boyarshchina cross-sections from eastern parts of the peninsula (Elina & Filimonova 1999, Elina et al. 1999, 2000, Elina et al. 2010; Fig. 1). Also, data from coeval deposits in central parts of Lake Onega as well as present-day ponds and mires in its basin have been analysed (Elina 1981, Filimonova 1995, 2010, Elina Filimonova 1996, Lavrova 2004, 2005). Vegetation dynamics are shown against variations in geomorphology (Lukashov & Ilyin 1993, Demidov & Lavrova 2000), climate (Klimanov & Elina 1984, Filimonova & Klimanov 2005) as well as the transgressions and regressions of Lake Onega (Devyatova 1986, Demidov 2005, 2006). In addition, surface pollen and spore spectra from the study area and other regions as well as correction coefficients for tree pollen have been examined (Elina & Filimonova 1999, Filimonova 2007 et al.). Ecological and geographic analyses of identified taxa (after Grichuk et al. 1969) and estimations of pollen concentration in the deposits (after Stokmarr 1972) have been performed to reveal redeposited and remote pollen, which is essential for the study of Late Glacial vegetation.
Fig. 1. Pollen diagram for the lake-mire deposits of the Zamoshye cross-section.

(analysed by E. Devyatova and L. Filimonova) [in: Elina and Filimonova 1999]

Left – stratigraphic column: 1–8 = fen peat: 1 – birch, 2 – woody, 3 – woody-reed, 4 – woody-grass, 5 – reed, 6 – grass, 7 – sedge-Sphagnum, 8 – Sphagnum (Sphagnum teres), 9 – transitional Sphagnum (S. centrale); 10 – sapropel-like peat; 11 – sapropel; 12–14 – clays: 12 – massive, 13 – fine sand lenses, 14 – varved. In the diagram, filled patterns show the pollen and spore content (%) of the taxa indicated; unfilled patterns show the content (%) magnified by 10; concentrations of less than 1% are shown with dots.
Geological Periods

Late Glacial period (AL, DR3: 11 800–10 300 BP). Approximately 12 000 years ago, the territory of present-day Lake Onega and its surroundings were occupied by the last glacial ice sheet. During the retreat of the Valdai glaciation, a large periglacial meltwater body formed in the Lake Onega basin and on the adjacent lowlands. Its area and water level varied constantly depending on the position of the ice margin, the glacial isostatic adjustment of the earth’s crust and the erosional activity around the lake’s margins. After reaching the southern shores of Zaonezhye Peninsula, the glacier retreated relatively rapidly. Large, deep periglacial water bodies such as Lake Onega (which was over 100 m deep), Lake Ladoga and the White Sea contributed to the rapid retreat of the glacier. The periglacial Lake Onega basin, over 100 m deep, was dominated by a type of deglaciation which caused the ascent and destruction of the ice lobe periphery. In this case, the ice margin retreated at a speed of no less than 1–1.5 km/year, while upon deglaciation of frontal type it retreated at a speed of no more than 200–250 m/year. However, on reaching the south shore of the Zaonezhye Peninsula, the glacier retreated fairly rapidly Active glacier tongues, moving across deep bays and the rugged relief of the peninsula, contributed to the rapid disintegration of the ice lobes. The deglaciation of the Lake Onega basin began around 12 400 BP. By about 11 600 BP the ice had receded completely from the northern parts of Zaonezhye Peninsula (Demidov 2005, 2006, Filatov 2010) (Fig. 2).

Fig. 2. Deglaciation of Zaonezhye Peninsula [After Demidov 2005, Filatov 2010].

1 – Active ice sheet
2 – Passive ice sheet
3 – Cracks and tunnels in glacier
4 – Old water bodies and icebergs
5 – Large dead ice massifs
6 – Runoff directions
7 – Modern hydrographic network
8 – Absolute altitudes of modern surfaces
9 – Large old deltas
During deglaciation, the water level of the periglacial Lake Onega changed constantly. The periglacial lake started to develop in the lower River Vytegra, on the southern shores of present-day Lake Onega. It is likely to have formed a part of the Upper Volga lake system where the water level was 120–130 m (Kvasov 1976). As a result of the glacial runoff, cutting through the river valley of Oshta, Tuksha and Oyat into the Baltic Sea about 12 500–12 400 BP, the lake’s water level dropped to 106 m (Demidov 2006). About 12 300 BP the ice margin retreated from the Svir river valley, and the lake was provided with a new, lower, threshold into the Baltic Sea (Saarnisto & Saarinen 2001). Consequently the water level in its southern parts dropped to 75–85 m (Demidov 2006). As a result of glacier retreat, deglaciation of new areas and glacial meltwaters, the periglacial Lake Onega reached its maximum size by the end of the Allerød (about 11 400 BP) when its water level rose to 115–130 m in the northern part. About 11 300 BP the water level dropped by 20–25 m down to 95–100 m due to isostatic uplift of the earth’s crust and the opening of a new threshold into the White Sea. Also another threshold was opened into Lake Ladoga in the northern parts of the Onega-Ladoga watershed and River Vidlitsa before the water level stabilized for a long time. The next large-scale regression of Lake Onega took place at the end of the Late Pleistocene about 10 300 BP due to the renewed runoff into Lake Ladoga through River Svir. At the same time Lake Onega lost its connection with the ice margin, which had retreated to Western Karelia. As a result, its level dropped by about 20 m and large areas were drained (Demidov 2005, 2006).

Varved clay accumulated in the periglacial Lake Onega until 10 700 BP. After the ice margin retreated beyond the lake basin, mass deposition of homogeneous clay and silt in Lake Onega began. As deglaciation proceeded, water-and ice-free areas were colonized by vegetation whose distribution and evolution were determined by climatic, geological and geomorphological factors.

At the final stages of the Valdai glaciation, climatic changes were considerable. Quantitative climatic indices have been estimated for the Late Dryas: mean July temperatures were 3–6° lower, mean January temperatures 8–14° lower, annual temperatures 5–9° lower and precipitation 175–250 mm/year lower than at present (Filimonova & Klimanov 2005; Fig. 3). During the earlier Allerød interstadial warm period, negative temperature and precipitation deviations would have been more substantial on Zaonezhye Peninsula without the huge periglacial water body that made the climate slightly less continental.
Fig. 3. Dynamics of the climate, of Lake Onega level and vegetation in the Late Glacial and Holocene periods.

Palaeoclimatic characteristics are shown as deviations from present values: $t_{vi} = 16^o$, $t_{i} = -11^o$, $t_{year} = 2^o$, total annual precipitation = 550 m.

Acronyms: T – tundra, FT – forest-tundra, NT – northern taiga, MT – middle taiga, ST – southern taiga, Qm – broad-leaved species and hazel.
The evolution of the vegetation in Zaonezhye began after the ice receded and plants started to invade suitable areas, free from the melting ice. First almost the entire Zaonezhye was covered by the periglacial Lake Onega, leaving only some islands, elongated in a near-N-S direction, above the water level (Fig. 4). Plant growth was boosted by the presence of small quantities of mineral nutrients in the substrate, supplied by glacial meltwaters. Lower plants, dominated by algae and lichens, were most probably the first to colonize the study area. These were followed by higher plants (Botrychium boreale, Dryas octopetala, Eurotia ceratoides, Lycopodium alpinum, Thalictrum alpinum, Saxifraga oppositifolia, Cryptogramma crispa, Ephedra and Saxifraga species) growing on crushed stones and rocky ground as well as on substrates with an unstructured, disturbed soil cover (Artemisia species, Chenopodium album, Ch. polyspermum, Ch. rubrum, Kochia laniflora and K. scoparia). These species are not sensitive to environmental change. However, they are resistant to temperature variations and water availability. These species grew on the soil-free islands that later turned into mainland of Zaonezhye Peninsula. First, seeds brought by various agents such as wind and water evolved into seedlings that provided the area with more seeds and formed a pioneer community. Later the pioneer species were joined by new species. As the ice retreated, water level in the periglacial lake dropped. While soils began to form on the islands and in adjacent areas, also the plant cover became more complex. It consisted of forest, tundra and steppe communities, comprised of species confined to different environments. Due to the proximity of the retreating ice cover, the weather was dry and the ground was saturated, which created favourable conditions for the growth of xerophytes, mesoxerophytes, mesophytes and hygrophytes. Late Glacial deposits on Zaonezhye Peninsula contain pollen of geographically diverse arctalpine (Dryas octopetala, Diphasiastrum alpinum, Saxifraga oppositifolia, Thalictrum alpinum, Oxyria digyna, etc.), hypoarctic (Betula czerepanovii, Botrychium boreale, Huperzia appressa, Lycopodium pungens, Rubus chamaemorus, Selaginella selaginoides, etc.), boreal (Alnus incana, Diphasiastrum complanatum, Lycopodium clavatum, etc.) and steppe species (Ephedra, Helianthemum, Eurybia ceratoides, Kochia scoparia, Kochia laniflora, etc.).

During the Late Glacial period the plant cover was open, as shown by low pollen concentrations and the occurrence of heliophyte pollen (Hippophae rhamnoides, Helianthemum and Ephedra) in the deposits. Pioneer plant groups and bare ground succeeded each other. One of the critical factors limiting the spread of vegetation was long-term permafrost, which prevented the downward growth of roots. Its existence in the study area is supported by the presence of halophytes (Salsola kali, Salicornia herbacea and Atriplex nudicaulis) that found favourable habitats in saline depressions. Chenopodium album, Ch. rubrum, Eurybia ceratoides and Ephedra are also resistant to moderate salinity. In the dry continental climatic conditions, salts accumulated in the surface soil layer, while permafrost prevented their transfer into the deeper horizons. Permafrost contributed to the saturation of soils, too, by preventing moisture from penetrating into deeper layers, which in turn led to solifluction. Cold winters with little snow and strong winds were typical of periglacial zones and resulted in soil erosion. Thus, solifluction and erosion created suitable habitats for plants growing in disturbed and unstructured soils (taxa are shown above).

Relief and the composition of Quaternary sediments were essential for the formation and distribution of plant communities. The succession of plains, ridges and hills created diverse conditions for plant growth on clay, loam and inequigranular sand. Some of the hills were completely devoid of Quaternary cover. Elevated areas and slopes were composed of rock debris, occupied by xerophyalous communities (i.e. species of the Chenopodiaceae family and the Artemisia Ephedra and Helianthemum genera, Dryas octopetala, Cryptogramma crispa, Huperzia appressa, etc.). Depressions with accumulated snow protected plants against cold winter winds and provided...
favourable habitats for tundra-like dwarf birch-green moss communities, consisting of *Selaginella selaginoides, Rubus chamaemorus* and *Salix, Pedicularis, Cyperaceae* and *Poaceae* species, in addition to *Betula nana* and *Bryales*.

One of the factors responsible for the distinctive pattern of the Late Glacial vegetation was the permanent exposure of the earth’s surface after the glacier retreat and the lowering of the periglacial lake level. As a result, paleocommunities of unstructured soils existed for a long time.

The presence of algae of the genus *Pediastrum* (*Pediastrum boryanum var. boryanum, P. integrum var. integrum, P. kawraiskyi, P. privum*) indicates that the periglacial Lake Onega was cold, deep and oligotrophic. Such conditions halted the spread of aquatic and littoral aquatic plants.

The growth of woody species in the late glacial period poses a complex and ambiguous question. On one hand the pollen content of the deposits from the late glacial period is high (Fig. 1). On the other, most pollen seems to have been transported by wind and redeposited, as indicated by the low pollen concentration of woody plants. At the same time, favourable habitats provided good conditions for some woody plants, e.g. *Betula pubescens, B. czerepanovii, Alnaster fruticosus* and *Alnus incana*. These species differ considerably in their adaptability to low temperatures, cold soils and permafrost. It is likely that there were favourable habitats for open communities of woody plants or individual trees at least at the end of the Allerød.

Another significant cooling event triggered the advance of the glacier in the Late Dryas (Fig. 3). Due to cold winters and thin snow cover, solifluction, erosion and weathering of the unstable ground increased. As a result, areas covered by crushed stone, rocky ground and plant communities on disturbed soils (*Artemisia, Chenopodiaceae* species, etc.) expanded. While the contribution of woody communities in the plant cover decreased, the tundra dwarf birch-green moss communities were survived in favorable habitats (Fig. 3, Fig. 4). In general the floristic composition of the Late Glacial vegetation remained practically unchanged.
Fig. 4. Palaeovegetation maps of Zaonezhye Peninsula (10 500, 8500, 7500, 5500, 3000 and 1000 BP) [After Elina et al. 2010].

The Holocene (10 300 BP – Present)
During the Holocene, the greater availability of heat and moisture triggered an irreversible change in plant cover dynamics. As a result, the treeless ecosystems of Late Dryas were succeeded by open birch woodland and, more recently, taiga forests.

The Preboreal period (PB: 10 300–9 300 BP) began with a substantial warming of the climate to a temperature maximum ca. 10 000 BP when July temperatures were 2°C lower, January temperatures 6°C lower and annual temperatures 4°C lower than at present. Also precipitation was lower by 150 mm/year. Then, in PB-2 (10 000–9 300 BP), the climate became more unstable and colder, especially in the winter months. The deviation of the above parameters was 4–4.5°, 6–9°, 5–7° and 150–200 mm/year, respectively (Filimonova & Klimanov 2005; Fig. 3).

The water level of Lake Onega continued to decrease, while transgressions and regressions succeeded one another (Fig. 3). Cross-sections have been studied from the massive clay deposits of Zamoshye and Boyarshchina on Zaonezhye Peninsula (Elina, Filimonova et al. 1999, Elina et al. 1999, 2000, Elina et al. 2010). Consequently, varves of fine sand found in the clay clearly correlate with the regressions: first varve at the DR₃/PB contact, second varve in the middle of PB and third varve at the end of PB (Fig. 1, Fig. 3).

As the water level of Lake Onega declined, islands jutted out of the water and merged to form larger islands. Water-free areas were colonized by Artemisia, Chenopodiaceae (including Chenopodium album, Ch. hybridum, Ch. foliosum, Ch. glaucum, Ch. polyspermum, Ch. ribrum, Eruota ceratoides, Salicornia herbacea, Salsola kali) and other pioneer plants. It looks as if these plant groups followed the retreating lake water and remained widespread until the end of the Preboreal period. At the beginning of the period, a large part of the area was occupied by dwarf birch-green moss tundra with Sphagnum, dwarf birch and willow thickets, occurring along the creeks. Birch continued to spread, although its contribution in the plant cover decreased. The tundra communities confined to fragmented stones and rocks on the tops and slopes of ridges, hight above sea level, persisted longer than other communities. The considerable contribution of wormwood-goosefoot-motley grass (Artemisia-Chenopodiaceae-Varia) paleocommunities during the Preboreal period was due to the cold and dry climate (Fig. 3), the cooling effect of Lake Onega and the formation of new land areas after the lowering of the lake’s water level. In the parts of Karelia, farther from large water bodies these communities were more typical during DR₃, whereas in the PB-period their contribution in the plant cover decreased (Elina 1981, Filimonova 1995, 2014, Lavrova 2005, 2006).

In the early Preboreal period open birch woodland (Betula czerepanovii, B. pubescens) spread on plains, ridge tops and ridge slopes. The ground cover was composed of Betula nana, Salix, Ericales, Poaceae, Bryales and Lycopodiaceae, presumably with a small percentage of Pinus sylvestris (Fig. 3, Fig. 4). Moist habitats were dominated by tall-grass open birch forests with Alnus incana, while depressions with good water flow and ground cover of clay and loam were colonized by birch-alder and alder grass-fern communities with Filipendula ulmaria, Geum rivale and Angelica sylvestris. In the late PB-2 (approximately 9 700 BP onwards), birch forests (Betula pubescens) and open pine-birch forests, similar to northern taiga forests, became more abundant (Fig. 3). Alder grew in tall-grass birch forests and formed alder groves.

During the Preboreal period the number of xerophytes, halophytes and species typical of unstructured and disturbed grounds decreased, together with arctic, arctalpine, hypoarctic and steppe flora. At the same time boreal species, especially mesophytes and hydrophytes became more abundant. Grasses were represented by Apiaceae, Asteraceae (Aster, Tanacetum type), Brassicaceae, Caryophyllaceae, Ephedra, Fabaceae, Galium,
Lamiaceae (including Mentha), Myosotis, Polygonaceae (including Bistorta officinalis, Rumex.), Ranunculaceae (including Thalictrum alpinum), Rosaceae (including Dryas octopetala, Filipendula ulmaria), Scrophulariaceae, Urtica, Cyperaceae, Poaceae and Polypodiaceae (including Polypodium vulgare). Lycopodiaceae included Diphasiastrum alpinum, D. complanatum, Huperzia apressa and Lycopodium pungens. The formation of shallow bays made possible the growth of wetland plants (Myriophyllum spicatum, Sparganium, Parnassia palustris, Phragmites australis, Typha angustifolia, T. latifolia, Cyperaceae, Isoëtes, Equisetum, Bryales and Sphagnum).

During the Preboreal period, nature and climate were generally unfavourable for human livelihood, although temporary settlements may have been established on the shores of shallow bays during warmer periods.

The Boreal Period (BO: 9300–8000 BP) is characterized by the same climate warming. It began with cold conditions but reached maximum temperatures around 8500 BP when air temperatures were either close to, or above present values in the Lake Onega basin (Elina et al. 1984, Devyatova 1986, Filimonova & Klimanov 2005). In BO-3 (8300–8000 BP) the climate cooled and around 8200 BP July temperatures decreased by 1.5°C, January temperatures by 3.5°C and annual temperatures by 2.5°C. The amount of precipitation were by 25 and 75 mm/year lower than at present, respectively (Fig. 3). Thus, the climate was drier during the Boreal period than at present.

In the BO-period, the water level in Lake Onega varied as transgressions were succeeded by regressions (Fig. 3). During the last regression, the water level dropped to 43 m above sea level. As a result, island area increased significantly.

The vegetation responded to the changes in nature and climate, changing from northern taiga in the first third of the Boreal period to middle taiga thereafter. Pine, birch-pine-green moss and grass-motley grass forests became predominant in the central parts of the islands (Fig. 4). Birch and alder tall-grass forests with Poaceae, Polypodiaceae (including Dryopteris littaeana, D. phegopteris and D. thelypteris) and motley grasses, e.g. Apiaceae, Fabaceae, Liliaceae, Polygonaceae (including Bistorta officinalis), Ranunculaceae (including Thalictrum), Rosaceae (including Filipendula ulmaria), Rumex, Urtica grew at lower altitudes in shallow, well-flowing topographic depressions.

The presence of Artemisia and Chenopodiaceae pollen in the deposits (Fig. 1) indicates that more extensive areas became water-free during the Boreal period. Furthermore, habitats responded to the new environmental conditions. Late Glacial deposits contain pollen of Hippophae rhamnoides and Ephedra as well as Diphasiastrum alpinum spores. Also the abundance of the Lycopodiaceae spores (Diphasiastrum complanatum, D. tristachium, D. alpinum, Huperzia selago, Lycopodium pungens, L. annotinum and L. clavatum) is characteristic of the Boreal period. Club mosses are characteristic of open woodlands and open, treeless areas, including exposed, rocky grounds. The increased abundance of pollen and spores of aquatic (Myriophyllum spicatum, Nymphaea, Potamogelon, Sparganium and Isoetes) and coastal-aquatic plants (Alisma, Parnassia palustris, Phragmites australis, Typha angustifolia, T. latifolia and Cyperaceae) indicate an abundance of shallow bays.

During the Boreal period Lake Onega retreated, more areas became water-free and the climate became milder. As a result, conditions for human livelihood became more favorable. Around the lake, people picked mushrooms and berries as well as fished and hunted for elk, reindeer, bear, hare and other animals, including waterfowl (geese, ducks, etc.)

The Atlantic period (AT: 8000–4700 BP) was a period of a climatic optimum as well as considerable changes in hydrology and vegetation. Air temperature were higher than at present throughout the entire period: 1–2.5°C warmer in July and 1–4°C warmer in

Reports of the Finnish Environment Institute 40 | 2014
January. In general, mean annual precipitation was higher by 50–75 mm/year. But it decreased in the late AT-3 (especially around 5200 BP) when air temperatures were relatively high (Fig. 3). As the results, the climate became drier in this time.

During AT-1 (8000–7000 BP), the natural complexes of the Lake Onega basin were affected by the warm, humid climate as well as the considerable (over 3 m) transgression of Lake Onega (Fig. 3). Also, the water levels in small and medium-sized water bodies rose, as well as the groundwater in mires (Filimonova, 2010 et al.). In the middle of AT-2 (7000–6000 BP), the climate became less humid and the crystalline Baltic Shield continued to ascend. As a consequence, the Lake Onega water level dropped by 5 m. Its subsequent variations were smaller, in accordance with humid and dry periods (Fig. 3).

Peat accumulation began here about 6700–6600 BP during the Mid-Atlantic regression of Lake Onega. The mire has never been flooded by lake water since (Elina & Filimonova, 1999). As a result of regression that preceded the AT-period, the depression, occupied now by Zamoshye Mire, separated from Lake Onega, and a shallow, overgrowing water body was formed there. This is supported by the greater occurrence of the pollen and spores of aquatic and mire plants and the formation of 10 cm thick sapropel and sapropel-like peat layers in the central portion of the mire in the late AT-1. Peat accumulation began there about 6700–6600 BP, when the Mid-Atlantic regression of Lake Onega took place.

A warmer and more humid climate supported the spread of broad-leaved species (Ulmus laevis, Ul. glabra, Quercus robur, Tilia cordata, Acer platanoides, Corylus avellana and Alnus glutinosa). These species became most abundant in Zaonezhye during AT-2, as shown by the radiocarbon date 6580±80 BP. During the AT-period, the vegetation acquired southern taiga features. At the beginning of the period, pine and birch-pine forests continued to dominate. However, also grass-green moss spruce forests were spreading (Fig. 3, Fig. 4). These communities became more prevalent since AT-2 (~7000 BP). Depressions with fertile soils, saturated by flowing water, grew birch-black alder and spruce-black alder forests with elm and hazelnut, as well as lush grasses (Angelica sylvestris, Fillipendula ulmaria, Bistorta officinalis, Fabaceae, Geum rivale, Humulus lupulus, Liliaceae, Urtica, Polypodiaceae, etc.). Also Alnus incana, Sorbus aucuparia, Viburnum opulus, Frangula alnus, Lonicera, Ribes and Salix have been encountered in these forest communities. The birch took part in coniferous forests and formed post-pyrogenic birch forests as well as birch-grass-moss communities, growing on eutrophic mires. Fires affected pine forests especially in dry habitats, as indicated by the Zamoshye pollen diagram (Fig. 1): The percentage of Pinus sylvestris pollen decreased, whereas the percentage of Betula sect. Albae pollen increased. Also pollen of Chamaenerion angustifolium and coal particles is occasionally encountered.

Shallow-water zones continued to overgrown by aquatic and mire plants (Hydrocharis Nuphar, Triglochin and Menyanthes trifoliata were added to the taxa identified earlier). At first shallow reed and reed-sedge mires were common close to the shoreline; later they were succeeded by grass-Sphagnum fens.

Atlantic period was the most favorable time for people’s lives. This contributed to the presence of many kilometers of shoreline with high, dry ridges, as well as an abundance of plant resources, game animals, birds and fish.

The Subboreal period (SB: 4900–2500 BP) began with an abrupt cooling event, with a drop in humidity to a minimum around 4500 BP. It determined the course of subsequent environmental change. According to climatic reconstructions from seven pollen diagrams for the Lake Onega basin, July temperatures were 0.5–1° lower, January temperatures 1–2° lower and precipitation 50 mm/year lower than at present (Elina et al., 1984, Filimonova & Klimanov 2005). Since SB-2 (4200 BP) temperatures
began to rise again, within the same range as during SB-1. However, mean annual precipitation was smaller. Climate was the driest during SB-1 (4700–4200 BP) and after 3900 BP (Fig. 3).

The regression of Lake Onega as well as smaller water bodies is consistent with the cooling and decreased precipitation during the early SB-period. At the same time, there was a drop in groundwater levels, including in the mires, where woody communities became common. During the middle-Subboreal transgression, moisture-loving plants reappeared, as indicated by the peat stratigraphy of Zamoshye Mire (Elina & Filimonova 1999, Elina et al. 1999).

The overall reduction of water level in the Lake Onega has led to an increase in land area. A significant cooling and reducing the humidity of the climate caused the gradual replacement of southern taiga forests on middle-taiga forests.

During the Subboreal period, spruce and pine-spruce green moss forests were common (Fig. 3, Fig.4). They occupied lacustrine glacial plains and selkä slopes. Broad-leaved species were present, although they were more common in moist birch-black alder and spruce-black alder forests. By the end of the period, their contribution to the forest composition had decreased. Corylus avellana, Populus tremula, Sambucus racemosa, Sorbus aucuparia, Viburnum opulus and Ribes occurred in the undergrowth. Pine forests with dwarf shrub, green moss and lichen grew on rocky ridges. Birch took part in coniferous forests, although it formed post-pyrogenic birch forests and played a leading role in the afforestation of mires.

Distinguished in the grass cover are several floristic groups characteristic of forests and forest edges with moist and fertile soils (Urtica, Thalictrum and Polypodiaceae), moist communities growing at the periphery of mires (Filipendula ulmaria, Bistorta officinalis and Geum rivale) and meadow-like moist (Parnassia palustris and Cyperaceae) and dry communities (Chamaenerion angustifolium, Galium, Potentilla, Ranunculaceae, Fabaceae and Liliaceae).

Eutrophic grass mires, one of which is 2770±60 years old, succeed coastal aquatic and wetland plant thickets. Mires became common towards the end of the period. The development of meadows and meadow-like communities is indicated by the considerable amount of grass pollen and the pollen content in the pollen diagrams (see Fig. 1).

Climate, the formation of new territories and the abundance of various food resources and forests with a variety of useful plants were favorable for living and the establishment of permanent settlements.

During the Subatlantic period (SP: 2500 BP – Present) the shoreline of the Zaonezhye Peninsula acquired its modern shape and landscapes. These landscapes have been affected by both natural and anthropogenic factors. During the SA-period the climate became colder than in the two previous periods. In the beginning, July temperatures were 1°C lower, January temperatures 2°C lower and precipitation 50 mm/year lower than at present. Both the temperature and the precipitation fluctuated simultaneously (Fig. 3). The most considerable warming event took place during the SA-2 (1800–800 BP) in the Viking epoch, especially around 1800 BP and during the Little Climatic Optimum in the Middle Ages (1100–1000 BP) when July temperatures were 1.5°C higher, January temperatures 2°C higher and precipitation 75 and 50 mm/year higher, respectively. The SA-3 (the past 800 years) began with a global cooling. In their coolest, around 700 BP, July temperatures were 1–1.5°C lower, January temperatures 1–2°C lower than at present. Precipitation was as it is today or smaller by 50 mm/year. Other cooling events occurred around 500 BP, 200 BP and a little more than 100 BP, while warming events took place around 600 BP, 300 BP and 170–150 BP. The lat-
The warming event began towards the middle of the 20th century (Klimanov & Elina, 1984, Filimonova & Klimanov 2005).

A rise in atmospheric humidity caused increased of groundwater level, including in the mires. At that time the moisture-loving mire communities became more common, peat accumulation rate increased and the degree of peat decomposition decreased (Elina & Filimonova 1999, Kuznetsov et al. 1999).

During the first part of SA-period, middle taiga spruce forests dominated (Fig. 3), especially those were widespread on the gently sloping moraine plains of selkä Zaonezhye Peninsula (Fig. 4). Pine forests were more common in the western esker area. Black alder and black alder-spruce forests with a lush grass cover grew between selkäs and in topographic depressions with good stream moistening. Birch took part in the above forests. It also formed tall-grass and pyrogenic birch forests as well as played a part in the afforestation of mires. Broad-leaved species (Acer, Ulmus and Tilia) grew on more fertile soils.

In the second part of SA-period, especially during the past 1000 years, the amount of coniferous forests has decreased and the amount of small-leaved forests has increased. Especially spruce forests have declined (Fig. 3). This has been largely due to agricultural development. Spruce forests growing on fertile soil were cut and burned for use as farmland. Pine has been used as building material and firewood as well as for charcoal. As a result of intensive human activities, most primeval forests have disappeared and been replaced by settlements, meadows, pastures, arable land and secondary forests. Abandoned agricultural land is now overgrown with birch, aspen and grey alder (Alnus incana).

The effects of human activities are reflected in the spore and pollen diagrams. There is a decrease in the proportion of pollen from coniferous plants, especially Picea, as well as an increase in the amount and diversity of grass pollen. Also coal particles are present. Pollen of species adapted to secondary habitats (Chenopodium album, Ch. rubrum, Ch. polyspermum, Chamaenerion angustifolium, Potentilla, Ranunculus, Artemisia and Poaceae) has become more common. Pollen of ruderal plants (Rumex, Urtica, Potentilla, Galium, Plantago, Apiaceae, Geraniaceae and Chenopodiaceae), segetal weeds (Asteraceae, Centaurea, Cichoraceae, Fabaceae, Caryophyllaceae and Lamiaceae) and cereals (Cerealia) also occurs. These changes in the spore and pollen spectra suggest that agricultural activities on Zaonezhye Peninsula began about 1100-900 BP. This conclusion is also supported by the radiocarbon dates 1140±50 BP and 950±110 BP obtained from the Moshguba and Shlyamino Mire deposits (Lavrova et al., 2007). Obtained data are in good agreement with the date 1060±60 BP for the beginning of agriculture in the vicinities of Essoila village, Syamozero Lake, on the Onega-Ladoga isthmus (Ekman & Zhuravlev 1986).

2500–1300 BP → pine, spruce-pine and spruce-black alder forests with present of elm and lime, as well as secondary forests dominated with birch and grey alder [SA-2,3: 1300 BP – 0 yrs].

The diversity natural patterns of Zaonezhye are a result of its geological evolution and climate history. Its carbonate and shungite rocks, diverse landforms and Quaternary deposits of various grain sizes have provided diverse habitats for species and communities in different light, moisture, heat and mineral conditions. These and other natural features of Zaonezhye contributed preserving individual species and communities (spruce and lime forests, black alder fens, and fens with black alder and spruce) that existed during the period of climatic optimum. *Tilia cordata*, *Ulmus laevis* and *U. scabra* are encountered on mainland Zaonezhye and on the islands of Zaonezhye. Nemoral, herbaceous plant species grow in areas with fertile soils (e.g. Kuznetsov 1993, Kravchenko et al. 1993).

Relicts of the cold Late Glacial period include *Helianthemum nummularium*, which is found on Bolshoi Lelikovsky Island (Kuznetsov 1997). In Karelia, pollen of *Helianthemum nummularium* occurs in Late Glacial deposits of some sections (Demidov & Lavrova 2001, Lavrova 2011). Nowadays the northern limit of the species’ distribution extends from the Åland Islands to the southwestern coast of Finland. Only five *Helianthemum nummularium* habitats are known to the north or east: two in Finland, two in Russian Karelia (northern shore of Janisjärvi Lake and Zaonezhye) and one in Cape Tury, Kola Peninsula (Vasari & Vasari 1999, Kravchenko 2007).

REFERENCES

Black alder swamp in Klimenetsky Island (Photo Tapio Lindholm).
1.6 Nature protected areas in Zaonezhye

Denis Maksimov*, Philip Uchuvatkin*, Ivan Kiprukhin**, and Anna Volkova***

* Directorate for regional protected areas of the Republic of Karelia
66 Rigachin St., 185005, Petrozavodsk, Karelia, Russia
E-mail: oopt@karelia.ru
** Ministry of Nature Management and Environment of the Republic of Karelia
2/24 Andropov St., 185035, Petrozavodsk, Karelia, Russia
E-mail: ecopetr@karelia.ru
***Petrozavodsk State University
33 Lenin prospect, 185035, Petrozavodsk, Karelia, Russia

Introduction

At present there are three regional nature reserves and 19 regional nature monuments on Zaonezhye Peninsula with a total area of 2500 ha (Table 1). In addition, the federal Kizhi zoological reserve (zakaznik) covers 50 000 ha in the southeastern part of the peninsula. Within its boundaries lie the Kizhi open-air museum and its buffer zone as well as the regional nature monuments “Yuzhniy Oleniy Island”, “Wetland by the village of Boyarschina”, “Wetland by Petrikov’s Bay” and “Wetland Zamoshye”.

Overview of protected areas in Karelia

On the whole there are 137 regional protected areas in the Republic of Karelia (as of 1 November 2014). These protected areas cover 391 600 ha, or 2.17% of the republic, and include the Valaam nature park (24 700 ha) as well as 31 nature reserves (zakazniki) and 105 nature monuments. The nature reserves consist of 15 landscape reserves (242 800 ha), one marine reserve (72 900 ha), 11 botanical reserves (2 100 ha) and four hydrological reserves (6 700 ha), while the nature monuments comprise 64 protected mires (31 600 ha), nine hydrological monuments (over 6 000 ha), 10 geological monuments (2 400 ha), three landscape monuments (2 300 ha) and 19 botanical monuments (over 100 ha). Overall nature reserves (75% of which are landscape reserves) constitute 82.86% of the total area of regional protected areas in the Republic of Karelia, whereas nature monuments make up 10.83% and nature parks 6.31%.

Buffer zones have been designated around the protected areas. By imposing restrictions to land use, these zones shield protected areas from negative human impact. In the Republic of Karelia, 33 regional protected areas (with a total area of 78 000 ha) are
accompanied by 5 600 ha of buffer zones on land. For 15 protected areas, the extent of the buffer zones has not been specified.

In the Republic of Karelia, regional protected areas are established in accordance with the Regional land-use plan of the Republic of Karelia, approved by the government of the republic (Scheme 2012, Regulation 2014). In justification materials to this document, there are two lists of new protected areas to be established by 2030: A list of planned protected areas, for which the necessary documents have been prepared (Annex 1), and a list of perspective protected areas (Annex 2).

The first list consists of protected areas to be established in the first stage. For these protected areas, the necessary ecological and economical impact assessments have been prepared and presented to the regional authorities. These assessments include detailed descriptions of ecological, social and economic impacts of the protected areas as well as their borders, areas and proposed protection regimes. At present there are eight planned protected areas with a combined area of 264 890 ha, or 1.5% of the total area of the Republic of Karelia. These include the nature reserves Chukozero, Gridino (in Loukhi municipality), Maslozero, Varozero, Yangozero, Yupauzhsuo and Zaonezhsky as well as the Vargachnoe-Korbozerskoe nature monument. Two regional protected areas were established in 2013: Gridino landscape reserve (8 400 ha; Kemi municipality) and Kumi-Porog nature monument (3 400 ha; Kalevala municipality). In addition, the Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences has conducted field studies on the mire systems of Yupauzhsuo and Kepasuo (Kalevala municipality) and prepared the necessary documents for the establishment of the Yupauzhsuo nature reserve.

The second list consists of perspective protected areas. These areas have high conservation value, for example habitats of regionally or nationally red-listed species. However, more detailed information is needed for the establishment of these protected areas. In the Regional land use plan there are altogether 49 perspective protected areas that cover a total area of 1 192 900 ha.

With the aim of developing the network of protected areas in Karelia and the Barents Euro-Arctic Region, in 2012 the Karelian Research Centre of the Russian Academy of Sciences conducted field studies and an ecological impact assessment of the landscapes, flora and fauna on Zaonezhye Peninsula, with funding from the Ministry of Natural Resources and Environment of the Republic of Karelia. Based on these studies as well as existing information, the Karelian Research Centre has prepared the ecological impact assessment of the Zaonezhskiy landscape reserve (zakaznik).

Protected areas on Zaonezhye Peninsula and its adjacent islands

The Klim-Gora nature monument is the largest existing regional protected area on the peninsula. It is one of the most picturesque parts of Zaonezhye Peninsula where Mount Klim rises 90 m above Lake Onega. The nature monument was established for the preservation of glaciofluvial landforms in their natural state, as well as for tourism and recreation.

Another geological monument worth mentioning is the Shunga outcrop, which is the only large outcrop of shungite rocks in the world. It is part of the Kizhi Skerries group of geological monuments, 12 km east of the Kizhi Islands, which also includes Yuzhniy Oleniy Island in northwestern Lake Onega.

Hydrological nature monuments include two water seeps: Tri Ivana and Solyanaya Yama. The Tri Ivana water seep is first mentioned in literature in 1861. It is located two kilometres north of the abandoned village of Karasozero, 22 km from the village of Velikaya Guba. The water seep resembles a funnel, 1-1.5 m in diameter and 0.5-0.7 m in depth, from where approximately one litre of water flows out every second.
It is near a small chapel, fenced with a stone dyke, and it has been covered with a wooden construction.

The Solyanaya Yama water seep is unique for Karelia. It is located in the backswamp depression of the river Sudma, two kilometres north of the village of Velikaya Guba. In the past, local people collected water from the seep to make salt. A wooden construction has been built inside the well. However, nowadays the wooden construction is dilapidated and the 6-m-deep well is half full of silt. The water’s salt concentration is 4 g/l at the surface and it increases deeper in the well. Due to the large quantities of hydrogen sulfide (32 mg/l), sodium chloride water is used as medicinal mineral water.

Nature reserves have been created to preserve unique plantations of broadleaf trees, including the state nature reserve “Highly productive stands of larch and common alder” as well as the nature monuments “Natural stands of small-leaved lime and Scotch elm (Ulmus glabra)”, “Natural stands of Scotch elm (Ulmus scabra)”, “Plantation of Siberian pine – 64” and “Plantation of Siberian pine – 65”. Scotch elm, small-leaved lime and Acer platanoides reach their northern limits in Zaonezhye. Protected areas on the peninsula also include the Anisimovschina botanical reserve, created in 1984. This reserve is a unique natural refugium for the curly (Karelian) birch, which is a calling card of both the peninsula and Karelia as a whole.

Wetlands cover only 5% of the total area of forest land on Zaonezhye Peninsula (See Chapter 2.3). However, nearly half of the protected areas in Zaonezhye are wetlands. These nature monuments represent wetlands of different type and genesis. In addition, wetland ecosystems are home to berries as well as rare and red-listed plant species.

Planned protected areas on Zaonezhye Peninsula

Several regional protected areas are planned to be established on Zaonezhye Peninsula. In 2009 the Karelian Research Centre of the Russian Academy of Sciences carried out a scientific feasibility study for the development of the protected area network in the Republic of Karelia (Feasibility study 2009). However, its first priority was the establishment of another planned protected area, the Zaonezhskiy nature reserve, which covers nearly 110 000 ha of unique esker landscapes in the northern part of the peninsula. In 2011 the Karelian Research Centre proposed a preliminary area and borders for the Zaonezhskiy nature reserve, which were included in the final version of the Land-use plan of the Republic of Karelia (Scheme 2012).

The nature conservation NGO “SPOK” is proposing the largest protected area in Zaonezhye, the Zaonezhsky nature park. It covers the entire southeastern part of the Zaonezhye Peninsula as well as parts of the peninsulas Sjar and Lish – altogether 115 000 ha. An alternative way to protect rare, red-listed and indicator species in the southeastern part of the peninsula is to establish six nature monuments, covering 14 500 ha (Fig. 1). These areas were identified during a multidisciplinary expedition, arranged by the Barents Protected Area Network (BPAN) project (Lindholm et al. 2014)

REFERENCES

Table 1. Regional protected areas on Zaonezhye Peninsula

<table>
<thead>
<tr>
<th>№</th>
<th>Name of protected area</th>
<th>Category</th>
<th>Profile</th>
<th>Area, ha</th>
<th>Date of establishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Highly productive larch and common alder stands</td>
<td>NR</td>
<td>Botanical</td>
<td>110.4</td>
<td>15/06/1976</td>
</tr>
<tr>
<td>2</td>
<td>Lake Kovshozero</td>
<td>NR</td>
<td>Botanical</td>
<td>60</td>
<td>20/07/1984</td>
</tr>
<tr>
<td>3</td>
<td>Anisimovschina</td>
<td>NR</td>
<td>Botanical</td>
<td>5.4</td>
<td>20/07/1984</td>
</tr>
<tr>
<td>4</td>
<td>Yuzhniy Oleniy Island</td>
<td>NM</td>
<td>Geological</td>
<td>75</td>
<td>29/07/1981</td>
</tr>
<tr>
<td>5</td>
<td>Shunga outcrop</td>
<td>NM</td>
<td>Geological</td>
<td>10</td>
<td>29/07/1981</td>
</tr>
<tr>
<td>6</td>
<td>Plantation of Siberian pine – 64</td>
<td>NM</td>
<td>Botanical</td>
<td>2.4</td>
<td>29/07/1981</td>
</tr>
<tr>
<td>7</td>
<td>Plantation of Siberian pine – 65</td>
<td>NM</td>
<td>Botanical</td>
<td>1.9</td>
<td>29/07/1981</td>
</tr>
<tr>
<td>8</td>
<td>Natural stands of small-leaved lime and Scotch elm (Ulmus scabra)</td>
<td>NM</td>
<td>Botanical</td>
<td>5</td>
<td>29/07/1981</td>
</tr>
<tr>
<td>9</td>
<td>Natural stands of Scotch elm (Ulmus scabra)</td>
<td>NM</td>
<td>Botanical</td>
<td>23</td>
<td>29/07/1981</td>
</tr>
<tr>
<td>10</td>
<td>Solyanaya Yama water seep</td>
<td>NM</td>
<td>Hydrological</td>
<td>20/07/1984</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tri Ivana water seep</td>
<td>NM</td>
<td>Hydrological</td>
<td>125</td>
<td>21/10/1993</td>
</tr>
<tr>
<td>12</td>
<td>Wetland Konye №402</td>
<td>NM</td>
<td>Wetland</td>
<td>86.2</td>
<td>24/05/1989</td>
</tr>
<tr>
<td>13</td>
<td>Wetland Razlomnoe</td>
<td>NM</td>
<td>Wetland</td>
<td>39</td>
<td>24/05/1989</td>
</tr>
<tr>
<td>14</td>
<td>Wetland Pigma №390</td>
<td>NM</td>
<td>Wetland</td>
<td>525</td>
<td>24/05/1989</td>
</tr>
<tr>
<td>15</td>
<td>Wetland Pala №400</td>
<td>NM</td>
<td>Wetland</td>
<td>204</td>
<td>24/05/1989</td>
</tr>
<tr>
<td>16</td>
<td>Wetland Kalezubskoe №3061</td>
<td>NM</td>
<td>Wetland</td>
<td>168</td>
<td>29/12/1997</td>
</tr>
<tr>
<td>17</td>
<td>Wetland by Lake Lelikozero №3063</td>
<td>NM</td>
<td>Wetland</td>
<td>200</td>
<td>29/12/1997</td>
</tr>
<tr>
<td>18</td>
<td>Wetland by River Lel-rechka</td>
<td>NM</td>
<td>Wetland</td>
<td>95</td>
<td>29/12/1997</td>
</tr>
<tr>
<td>19</td>
<td>Wetland Zamoshye №483</td>
<td>NM</td>
<td>Wetland</td>
<td>178</td>
<td>29/12/1997</td>
</tr>
<tr>
<td>20</td>
<td>Wetland by Petrikov’s Bay</td>
<td>NM</td>
<td>Wetland</td>
<td>43</td>
<td>29/12/1997</td>
</tr>
<tr>
<td>21</td>
<td>Wetland by the village of Boyarschina</td>
<td>NM</td>
<td>Wetland</td>
<td>24</td>
<td>29/12/1997</td>
</tr>
<tr>
<td>22</td>
<td>Klim-Gora</td>
<td>NM</td>
<td>Landscape</td>
<td>617</td>
<td>21/10/1993</td>
</tr>
</tbody>
</table>
Fig 1. Location of the existing and planned protected areas of Zaonezhye Peninsula.
2 Biomes and biogeography of Zaonezhye Peninsula area

2.1 Modern landscapes of Zaonezhye Peninsula

Maria S. Bogdanova

Institute of Water Problems in the North of the Karelian Research Center of Russian Academy of Sciences.
50 Alexandra Nevskogo St., 185003 Petrozavodsk, Karelia, Russia
E-mail: mari-mb@mail.ru

Zaonezhye is located on the northern shore of Lake Onega. It includes Zaonezhye Peninsula and the adjacent Kizhi Archipelago. According to the biogeographical classification of Northwest Russia, Zaonezhye belongs to the Karelian middle taiga region of the Eastern European taiga zone (A. Isachenko 2008). Selkä terrain, plains and drained and cultivated peatland dominate the landscape. The selkäs are elongated ridges of consolidated crystalline rocks, whereas the plains consist of boulder, sandy loam and loam or boulder-free sand and loam.

In the course of the history, a succession of human communities with different economic activities, agricultural practices and socioeconomic conditions exerted a considerable influence on the modern landscapes of the region. I have divided the landscape history of Zaonezhye into eight stages from the Mesolithic period to the present, based on the analysis of available data (Bogdanova 2011).

To assess the present landscapes of Zaonezhye, basic features of the landscape are divided based on landscape dynamics into site features (relatively stable properties of relief and underlying rocks) and long-term states (more dynamic characteristics of vegetation and soils). Landscape areas are described using three basic indices: 1) landform or morphological features of the relief, 2) composition of underlying (soil-forming) rocks in the uppermost (1 m) layer and 3) moisture regime (drainage conditions). Natural processes as well as human activities have influenced the landscape dynamics, which consists of different states of different lengths (G. Isachenko 1998, 2007).

The landscapes of Zaonezhye were studied between 2005 and 2013. Basic landscapes were described during field studies. The resulting 1050 landscape descriptions formed the basis for the database “Landscape structure of the Zaonezhye hydrographic province, Republic of Karelia” (Bogdanova 2014). Large-scale maps show key areas of the most representative landscapes.

I have developed a classification of basic landscapes in Zaonezhye and prepared a 1:200 000 scale landscape map. The map shows 775 contours and 32 different types of landscapes, including 16 landscape combinations. Contrasting landscapes are combined if the map scale is too large to show small-scale differences when landscapes succeeded one another at determined intervals. In addition to natural landscapes
(unaffected by human activities), the map shows 14 types of landscapes modified by long-term agricultural use and/or drainage as well as three artificial landscapes. The total area studied is 1964 km2, including the inland water bodies and islands of Zaonezhye Peninsula (but excluding Bolshoi Klimenetsky, Yernitsky and Bolshoi and Maly Lelikovsky Islands).

The landscape map provides a reliable tool for describing the spatial distribution of natural complexes in Zaonezhye and assessing their present condition. The spatial distribution of the landscapes and their long-term vegetation and soil types are shown in Table 1. When vegetation and soil cover are fragmented and diverse, only dominant vegetation and soil types are described.

Table 1. Landscape classification in Zaonezhye.

<table>
<thead>
<tr>
<th>Landscape sites</th>
<th>Long-term states</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant vegetation</td>
<td>Dominant soil types</td>
<td>km2</td>
<td></td>
</tr>
<tr>
<td>Combinations of selkä ridges and depressions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(The elongated selkä ridges consist of Proterozoic crystalline rocks, such as gabbro-dolerite, shungite shale, tuff schist and tuffite, covered by moraine and diluvium. The depressions between the ridges are covered by boulder, sandy loam and loam, or a thin layer of peat.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. High selkä ridges (relative height 40–90 m) with flat tops and stepped slopes, covered by a layer of eluvium-deluvium and moraine (up to 1.0–1.5 m) and peat (up to 1 m). Rocky scarp are up to 30 m high and their lower parts are covered by coarse clastic material.</td>
<td>Pine- and spruce-dominated Vaccinium myrtillus-Calamagrostis arundinacea forests on the ridge tops and slopes; Spruce-dominated forests with a large proportion of pine, birch and aspen; Aspen-dominated forests with spruce, birch, Vaccinium myrtillus and green moss; Bogs in depressions and on the slopes</td>
<td>Primitive soils, Leptosols, Cambisols, Peat bog, Soil absent</td>
<td>75.0</td>
</tr>
<tr>
<td>2. High, rugged selkä ridges (relative height 30–80 m) with numerous rock exposures and cliffs (relative height 30 m). The ridge tops and slopes are covered by a layer of discontinuous eluvium-deluvium and moraine (up to 0.5 m).</td>
<td>Sparse pine forests with Vaccinium vitis-idaea and lichen, as well as rocky wasteland on the ridge tops; Birch- or pine-dominated forests with green moss, Vaccinium myrtillus, V. vitis-idaea and lichen on the slopes; Bogs in depressions</td>
<td>Primitive soils, Leptosols, Cambisols, Peat bog, Soil absent</td>
<td>85.5</td>
</tr>
<tr>
<td>3. Poorly structured selkä ridges (relative height up to 20 m) with few rock exposures and a layer of discontinuous eluvium-deluvium and moraine (up to 0.5 m)</td>
<td>Sparse pine forests with green moss, Vaccinium vitis-idaea, dwarf shrubs and lichen, as well as rocky wasteland on the ridge tops;</td>
<td>Primitive, Leptosols, Soil absent</td>
<td>37.5</td>
</tr>
<tr>
<td>Combinations of contrasting landscape sites, dominated by drained slopes with mineral soils, where differences in elevation are more than 10 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Hills and ridges consisting of sandy loam and boulder (relative height up to 20 m), combined with plains formed of sand, clay and boulder and sandy loam, as well as thin peatlands</td>
<td>Pine-, spruce- or birch-dominated forests with green moss, Vaccinium myrtillus, dwarf shrubs and Calamagrostis arundinacea; Former clearcut areas covered by Calamagrostis arundinacea and secondary mixed forests, developed through natural succession; Different types of mires from bogs to fens in depressions</td>
<td>Leptosols, Cambisols, Peat bog</td>
<td>86.3</td>
</tr>
<tr>
<td>Landscape Type</td>
<td>Description</td>
<td>Vegetation/Soil Type</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>5. Hills and ridges consisting of sandy loam and boulder, often with crystalline rock exposures, combined with undulating plains formed of consolidated boulder, sand and sandy loam, as well as thin peatlands</td>
<td>Sparse pine forests with dwarf shrubs, green mosses and lichen on tops of eskers; Spruce-, aspen- or birch-dominated forests with pine, green mosses, Vaccinium myrtillus, dwarf shrubs and Calamagrostis arundinacea; Clearcut areas covered with Calamagrostis arundinacea, Rubus idaeus and Chamaenerion angustifolium; Secondary mixed forests, developed through natural succession of former clearcut areas on the slopes and in depressions; Transitional and raised bogs in depressions</td>
<td>Leptosols, Cambisols, Peat bog</td>
<td>46.5 2.4</td>
</tr>
<tr>
<td>6. Elongated hills and ridges consisting of sand and pebble or sand and boulder, combined with peatlands in depressions. Often there are also plains consisting of boulder, pebble and sand.</td>
<td>Birch- or pine-dominated forests with dwarf shrubs and green moss; Clearcut areas in different stages, covered with Calamagrostis arundinacea and Chamaenerion angustifolium; Fens and transitional bogs in depressions</td>
<td>Podzol, Surface podzol, Peat bog</td>
<td>16.9 0.9</td>
</tr>
<tr>
<td>Combinations of contrasting landscape sites, dominated by drained slopes with cultivated mineral soils, where differences in elevation are more than 10 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Cultivated hills and ridges consisting of sandy loam and boulder (relative height up to 20 m), commonly combined with plains formed of sand and clay or boulder, sand and loam, as well as thin peatlands</td>
<td>Grassland (Poaceae and herbaceous meadows), arable land and abandoned meadows, which have become overgrown with trees; Young birch, aspen and pine forests with herbaceous plants and spruce; Fens and transitional bogs in depressions</td>
<td>Cambisols-old arable soils, Peat bog</td>
<td>21.1 1.1</td>
</tr>
<tr>
<td>8. Cultivated hills and ridges (eskers) consisting of shungitic and shungite-bearing pebble, boulder and sand, combined with cultivated plains formed of boulder, pebble and sand, as well peatlands in depressions</td>
<td>Grass and herbaceous meadows, arable land, overgrown meadows; Young birch, aspen and pine forests with herbaceous plants and spruce; Fens and transitional bogs in depressions</td>
<td>Shungite cambisols-old arable soils, Peat bog</td>
<td>45.5 2.4</td>
</tr>
<tr>
<td>Drained plains, dominated by mineral soils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Plains formed of boulder-free sand and sandy loam</td>
<td>Pine-dominated forests with dwarf shrubs and green moss; Birch-dominated forests with spruce, Vaccinium myrtillus and Calamagrostis arundinacea</td>
<td>Surface podzol</td>
<td>6.5 0.3</td>
</tr>
<tr>
<td>10. Plains formed of small boulder, pebble and sand, often combined with thin peatlands</td>
<td>Birch- or pine-dominated forests with spruce, Calamagrostis arundinacea, dwarf shrubs and green moss; Fens and transitional bogs</td>
<td>Podzols, Surface podzol, Peat bog</td>
<td>103.43 5.3</td>
</tr>
<tr>
<td>11. Undulating plains and gently sloping ridges on consolidated boulder, sand and sandy loam, often combined with thin peatlands</td>
<td>Birch- or aspen-dominated forests with pine, spruce, dwarf shrubs, Calamagrostis arundinacea and green moss; Young mixed forests with herbaceous plants; Clearcut areas covered with Calamagrostis arundinacea and Chamaenerion angustifolium; Fens and transitional bogs</td>
<td>Leptosols, Cambisols, Peat bog</td>
<td>357.2 18.2</td>
</tr>
<tr>
<td>Cultivated drained plains, dominated by mineral soils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Cultivated, undulating plains and terraces formed of boulder-free sand and sandy loam (lacustrine-glacial and glacial)</td>
<td>Grass and herbaceous meadows, arable land, overgrown meadows; Young mixed forests, dominated by birch or aspen, with herbaceous plants and pine</td>
<td>Soddy old arable soils</td>
<td>37.7 1.9</td>
</tr>
</tbody>
</table>
Combinations of plains with different soil moisture contents

<table>
<thead>
<tr>
<th>Combination Description</th>
<th>Vegetation</th>
<th>Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Cultivated, undulating plains formed of small boulder, pebble and sand (fluvio-glacial deposits)</td>
<td>Grass and herbaceous meadows, arable land, overgrown meadows; Mature mixed forests, dominated by birch or aspen, with herbaceous plants and pine; Young mixed forests, dominated by spruce, birch or aspen with herbaceous plants and Calamagrostis arundinacea</td>
<td>Cambisols-old arable soils</td>
</tr>
<tr>
<td>14. Cultivated, undulating plains and gently sloping ridges on consolidated boulder, sand and sandy loam (moraine)</td>
<td>Grass and herbaceous meadows, arable land, overgrown meadows; Young forests dominated by birch, common alder (Alnus glutinosa) and bird cherry (Padus avium) with herbaceous plants Mature spruce or aspen dominated forests with pine, herbaceous plants and Calamagrostis arundinacea</td>
<td>Cambisols-old arable soils</td>
</tr>
</tbody>
</table>

Combinations of cultivated sites with different soil moisture contents (plains and low hills)

<table>
<thead>
<tr>
<th>Combination Description</th>
<th>Vegetation</th>
<th>Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Permanently saturated plains, covered with boulder-free sand, quite often with a thin layer of peat, with a mildly undulating and gently sloping relief. These landscapes also include small peatlands.</td>
<td>Forests dominated by pine, birch and common alder with herbaceous plants, sedges, horsetail and Sphagnum; Fens and transitional bogs</td>
<td>Humic gley, Peaty gley, Peat bog</td>
</tr>
<tr>
<td>16. Permanently saturated plains, covered with boulder-free clay and sandy loam, quite often with a thin layer of peat, with a mildly undulating relief. These landscapes also include small peatlands.</td>
<td>Birch-, aspen- or pine-dominated forests with common alder, herbaceous plants and Vaccinium myrtillus; Birch-, pine- or common alder-dominated forests with herbaceous plants, sedges and Sphagnum; Birch forests with meadowsweet (Filipendula) and sedges; Lowland fens and transitional bogs</td>
<td>Humic gley, Peaty gley, Peat bog</td>
</tr>
<tr>
<td>17. Saturated plains, covered with boulder and sandy loam, quite often with a thin layer of peat. These landscapes also include small peatlands and hills, consisting of sand and boulder.</td>
<td>Birch, pine and spruce forests with herbaceous plants, Vaccinium myrtillus and Sphagnum; Birch, pine and dwarf shrub forests on the hills; Fens and transitional bogs in depressions</td>
<td>Cambisols, Gley cambisols, Peaty gley, Peat bog</td>
</tr>
<tr>
<td>18. Drained peatland and artificially drained plains with a thin layer of peat (up to 0.5 m): often combined with drained plains</td>
<td>Birch and pine forests or birch, pine and spruce forests with dwarf shrubs, Sphagnum and herbaceous plants of moist soils</td>
<td>Peaty gley, Humic gley, Cambisols</td>
</tr>
</tbody>
</table>

Combinations of plains with different soil moisture contents

<table>
<thead>
<tr>
<th>Combination Description</th>
<th>Vegetation</th>
<th>Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Predominantly cultivated, saturated plains, covered with boulder-free clay and sandy loam, quite often with a thin layer of peat. These landscapes include small peatlands and cultivated hills of sand and boulder.</td>
<td>Meadowsweet (Filipendula) and sedge-meadowsweet meadows, including those overgrown with willow and birch; Meadows with herbaceous plants, sedges and Sphagnum; Young deciduous forests with herbaceous plants and pine; Grass and herbaceous meadows and deciduous forests with pine growing on the hills; Fens and transitional bogs in depressions</td>
<td>Humic gley, Peaty gley, Peat bog, Cambisols-old arable soils</td>
</tr>
<tr>
<td>20. Cultivated plains and gently sloping ridges, covered with boulder, shungite-bearing and shungitic sandy loam, often combined with shallow peatlands</td>
<td>Arable land, grass and herbaceous meadows, overgrown meadows; Young grey alder and birch forests; Birch-or aspen-dominated forests with pine or spruce, herbaceous plants, Vaccinium myrtillus and green moss; Fens and transitional bogs</td>
<td>Shungite cambisols-old arable soils</td>
</tr>
<tr>
<td>21. Cultivated, drained plains and gently sloping ridges covered with boulder and shungitic sandy loam, with crystalline rock exposures. These are often combined with plains formed of boulder-free, sandy loam.</td>
<td>Grass and herbaceous meadows, arable land, overgrown meadows; Young small-leaved forests with herbaceous plants; Birch and aspen forests with herbaceous plants, pine and spruce; Meadows of herbaceous plants and sedges, mixed with birch forests with herbaceous plants and sedges of moist soils</td>
<td>Cambisols-old arable soils, Humic gley</td>
</tr>
<tr>
<td>22. Cultivated, artificially drained plains, covered with boulder-free clay and sandy loam, as well as paludified plains with a thin layer of peat. Occasionally there are also cultivated hills of sand and boulder.</td>
<td>Grass, tall grass and herbaceous meadows, including overgrown meadows; Meadows with sedges and Sphagnum; Small-leaved forests with herbaceous plants and pine; Fens and transitional bogs</td>
<td>Soddy humic gley, Peaty gle, Peat bog, Cambisols-old arable soils</td>
</tr>
<tr>
<td>Peatland with a peat layer of more than 0.5 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Oligotrophic raised bogs (peat over 1.5 m thick)</td>
<td>Pine-covered Sphagnum-cotton-grass-dwarf shrub bogs</td>
<td>Raised bog soils</td>
</tr>
<tr>
<td>24. Drained oligotrophic raised bogs</td>
<td>Pine-covered Sphagnum-cotton-grass-dwarf shrub bogs</td>
<td>Drained raised bog soils</td>
</tr>
<tr>
<td>25. Meso-oligotrophic and mesotrophic peatland (varying thicknesses of peat)</td>
<td>Herb-sedge-Sphagnum bogs, often covered with birch and pine; Moist birch- or pine-dominated forests with herbaceous plants, sedges and Sphagnum</td>
<td>Mesotrophic bog soils</td>
</tr>
<tr>
<td>26. Drained meso-oligotrophic and mesotrophic peatland</td>
<td>Herb-sedge-Sphagnum bogs, often covered with birch and pine; Moist birch- or pine-dominated forests with herbaceous plants, sedges and Sphagnum</td>
<td>Drained mesotrophic bog soils</td>
</tr>
<tr>
<td>27. Drained, cultivated meso-oligotrophic and mesotrophic peatland</td>
<td>Grass and herbaceous meadows; Moist meadows with herbaceous plants and sedges following the cessation of agriculture; Moist meadows with herbaceous plants and sedges, including those with birch undergrowth; Birch forests with moist herbaceous plants</td>
<td>Drained mesotrophic bog soils and cultivated bog soils</td>
</tr>
<tr>
<td>28. Mesoeutrophic and eutrophic peatland in lotic depressions; varying thicknesses of highly mineralized peat</td>
<td>Sedge and herb-sedge bogs with willow, birch and black alder; Black alder and birch forests with moist herbaceous plants; Reed thicket</td>
<td>Boggy fen peat and bog-gley soils</td>
</tr>
<tr>
<td>29. Drained, cultivated mesoeutrophic and eutrophic peatland</td>
<td>Grass and herbaceous meadows; Meadows with moist herbaceous plants and sedges following the cessation of agriculture; Birch scrub forests; Birch forests with moist herbaceous plants</td>
<td>Drained and cultivated boggy fen peat and bog-gley soils</td>
</tr>
<tr>
<td>Sites with relief and grounds transformed by human activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Former peat production areas</td>
<td>Peat wasteland in areas affected by fires; Burned moorland with heather Young birch forests</td>
<td>Soil absent</td>
</tr>
<tr>
<td>31. Sand- and gravel-pits</td>
<td>Only sparse vegetation during quarrying; Young pine and small-leaved forests after the cessation of quarrying</td>
<td>Soil absent</td>
</tr>
</tbody>
</table>
Due to the characteristics of the geological structure, the landscape pattern of Zaonezhye is fragmented, including a mosaic of small-scale landscapes. Its landscape contours are typically elongated from northwest to southeast. In Zaonezhye, a total of eight landscape areas are identified based on recurrent combinations of landscapes (Fig. 1):

1. Kosmozero-Putkozero area, dominated by selkä ridges, cultivated plains and hills
2. Dianogorsko-Mizhostrov area, dominated by selkä ridges
3. Pigmozero area, dominated by fluvioglacial sand plains and peatland
4. Myagrozero-Lelikovo area, dominated by moraine plains and peatland
5. Shunga-Kuzaranda area, dominated by cultivated land on shungite and shungite-bearing rocks, as well as drained and cultivated plains and peatland
6. Limozero-Gankovo area, dominated by moraine plains, covered with a thin layer of peat, as well as peatland and drained peatland
7. Velikaya Guba-Tambitsa area, dominated by cultivated plains on moraine, and peatland
8. Kizhi area, dominated by cultivated land on shungite and shungite-bearing rocks.
Cultivated land makes up a large proportion of the landscapes in Zaonezhye. In the past, it has been one of the most agriculturally developed areas in Karelia. Agricultural development in Zaonezhye began in the 9th and 10th centuries, although natural complexes were most significantly transformed in the 19th century. By the end of the 19th century, agricultural development had reached its peak with about 30% of the peninsula cultivated for arable crops or hay. Old arable land is characterized by a well-defined soil horizon, even if the land is no longer cultivated. Normally the horizon is over 15 cm thick. On old arable land, speckled alder, birch cherry and mountain ash dominate the forest cover, whereas the ground cover is characterised by meadow species.

The agricultural development of Zaonezhye is characterized by the cultivation of bouldery (moraine and fluvioglacial) plains, ridges and hills as well as gently sloping selkäs and relatively steep slopes of (up to 50–70%) crushed stone. Boulders were removed and stored for future use. Local people called these piles *rovnitsas*. *Rovnitsas* are a part of the cultural landscape of Zaonezhye, reminding of its agricultural history. It was not until the late 20th century that people began draining bogs here. Until then only small parts of paludified plains and lowland bogs had been used for cultivating hay.

During the past centuries unique cultural landscapes have formed in Zaonezhye where plains, selkä ridges, coniferous and small-leaved forests, dry valley forests, arable land and lakes coexists. Wooden architecture is an inseparable part of the region’s landscape. There are several well-preserved old wooden buildings in Zaonezhye, including 96 architectural monuments (including the famous churches of Kizhi Island), of which 65 are listed buildings. The best example of wooden architecture in Zaonezhye is the Kizhi Pogost with the Church of the Intercession and the Church of the Transfiguration. Kizhi Pogost is included in the UNESCO list of World Heritage Sites.

Zaonezhye landscapes are transforming: Coniferous and small-leaved forests are maturing. Agricultural land has become overgrown. Cutting areas and abandoned quarries grow scrub forests. Over 20 different dynamic processes have been identified in different types of landscapes. The following trends are most typical for the region:

- The composition and growing stock of pine and spruce forests on selkä ridges have stabilized.
- The phytomass and growing stock of young and middle-aged small-leaved coniferous forests in cutting areas have increased.
- The phytomass and growing stock of young and middle-aged small-leaved forests and small-leaved coniferous forests on former agricultural land have increased.
- Secondary paludification of reclaimed land is accompanied by the appearance of mesohygrophytes and hygrophytes in the vegetation cover. Vegetation cover is actively overgrown by scrub forests.
- Meadows are declining and secondary small-leaved forests are increasing as former agricultural land becomes overgrown with speckled alder, birch, aspen and pine.
- Grass and herb-grass communities are succeeded by tall grass-chervil (*Anthriscus sylvestris*) and tall grass-raspberry (*Rubus idaeus*) communities.

If Zaonezhye landscapes are left without human intervention, the area of both young and mature mixed small-leaved forests as well as small-leaved coniferous for-
ests will increase in the next 50 years. Also the portion of young small-leaved forests on overgrown meadows is expected to increase.

A wide range of landscapes on Zaonezhye Peninsula needs protection, including the rapidly disappearing cultural landscapes. Protected areas with different protection regimes should be established to promote nature conservation and environmental tourism in the area.

REFERENCES

Fig. 3. Stepped slope of the selkä ridge (Landscape sites I, Table I) (Photo Maria Bogdanova).
Fig. 4. Rugged top of the selkä ridge (Landscape sites 2, Table 1) (Photo Maria Bogdanova).
Fig. 5. Slope of the selkä ridge (Landscape sites 2, Table 1) (Photo Maria Bogdanova).
Fig. 6. Cliff of the selkä ridge (Landscape sites 1 and 2, Table 1) (Photo Maria Bogdanova).
Fig. 7. Poorly structured low selkä ridge (Landscape sites 3, Table 1) (Photo Maria Bogdanova).

Fig. 8. Cultivated ridge (esker) consisting of pebble, boulder and sand (Landscape sites 8, Table 1) (Photo Maria Bogdanova).
Fig. 9. Arable land on esker, consisting of shungitic pebble and sand (Landscape sites 8, Table 1) (Photo Maria Bogdanova).

Fig. 10. Plain formed of boulder-free sand (Landscape sites 9, Table 1) (Photo Maria Bogdanova).
Fig. 11. Plain on consolidated boulder, sand and sandy loam (moraine) (Landscape sites 11, Table 1) (Photo Maria Bogdanova).

Fig. 12. Cultivated plain formed of boulder-free sand (Landscape sites 12, Table 1) (Photo Maria Bogdanova).
Fig. 13. Plain formed of small boulder, pebble and sand (fluviglacial deposits) (Landscape sites 13, Table 1) (Photo Maria Bogdanova).

Fig. 14. Cultivated plain on consolidated boulder, sand and sandy loam (moraine) (Landscape sites 14, Table 1) (Photo Maria Bogdanova).
Fig. 15. Overgrown arable land on consolidated boulder, sand and sandy loam (moraine) (Landscape sites 14, Table I) (Photo Maria Bogdanova).

Fig. 16. Plain covered with boulder-free clay and sandy loam (Landscape sites 16, Table I) (Photo Maria Bogdanova).
Fig. 17. Cultivated, artificially drained plain, covered with boulder-free clay and sandy loam (Landscape sites 22, Table 1) (Photo Maria Bogdanova).

Fig. 18. Oligotrophic raised bog (Landscape sites 23, Table 1) (Photo Maria Bogdanova).
Fig. 19. Mesotrophic peatland (Landscape sites 25, Table 1) (Photo Maria Bogdanova).
Fig. 20. Eutrophic peatland (Landscape sites 28, Table 1) (Photo Maria Bogdanova).

Fig. 21. Former peat excavations (Landscape sites 30, Table 1) (Photo Maria Bogdanova).
Fig. 22. Sand- and gravel-pit (Landscape sites 31, Table I) (Photo Maria Bogdanova).
Fig. 23. Shungite rock quarry (Landscape sites 32, Table I) (Photo Maria Bogdanova).
2.2 Landscape structure of Zaonezhye Peninsula

Vladimir Karpin

Forest Research Institute of the Karelian Research Center of Russian Academy of Sciences
11 Pushkinskaya St., 185610 Petrozavodsk, Karelia, Russia
E-mail: landscapeexplorer@gmail.com

Introduction

Zaonezhye Peninsula is characterised by a complex landscape structure as well as a diverse forest cover. According to Volkov et al. (1990), Gromtsev (2008) and Gromtsev (2013), there are two contrasting types of geographical landscapes on Zaonezhye Peninsula (Fig.1): (1) Paludified lacustrine and lacustrine-glacial plains occur in the east, where forests are dominated by spruce (II in Fig 1), while (2) paludified tectonic-denudation ridge (selkä) landscapes occur in the west, where forests are dominated by pine (I in Fig.1).

The landscape structure of Zaonezhye consists of large geomorphological areas, or geographical terrains. These geomorphologically uniform areas cover approximately 10 000 hectares (or over 90 % of the area). The geographical terrains have a homogeneous composition of Quaternary sediments as well as uniform hydrographic and soil conditions. As a consequence, they show a constant succession of forest and mire complexes on the mesoscale, covering areas of 10–100 ha (Gromtsev 2000, 2008).

![Fig. 1. Geographical terrains of Zaonezhye Peninsula. Image and fax viewing software.](image-url)
Results

The tectonic-denudation landscape of Zaonezhye varies at the sub-landscape level (Selkä landscapes 2013). Three types of geographical terrains have been identified:

Moderately paludified tectonic-denudation ridge terrain, dominated by pine habitats (No. 1 in Fig. 1)

This dominant terrain type covers 40% of the area (Fig. 2). Its relief is a result of multiple tectonic movements that have created a system of northwest-trending subparallel folds, comprising ridges (selkäs), steep slopes and steplike scarps. The long and rocky ridges correspond to synclines, whereas the straight, narrow and shallow basins and bays of Lake Onega are consistent with the anticlines. The fold structure is broken by a system of stepped strike-slip faults. Quaternary sediments are represented by a thin moraine cover. On the ridge tops, moraine is either dozens of centimeters thick or completely absent, while on the slopes and in the depressions between the ridges, moraine can be up to 2 m thick. Altitudes range from 33 m to 202 m, while altitudes of adjacent landforms vary between 20 m and 50 m above sea level. Overall, mires cover less than 20% of the terrain. Open mires account for 5%. Mires are predominantly mesotrophic or oligotrophic. Hydrographically, the percentage of lakes is relatively high (28%). The network of rivers and lakes shows a pattern of small streams and small lakes, which contributes to the fragmentation of the forest cover.

The soil cover is dominated by two soil types: Primitive, poorly developed soils cover bedrock exposures on ridgetops and rocky shores. These soils are infertile and susceptible to erosion. More fertile, humus-rich soils known as Leptosol are common on ridge slopes. The dissected topography, disrupted with tectonic dislocations, is responsible for a distinctive microclimate. Conditions are favourable for more southern flora and fauna on south-facing slopes, which receive more sunlight and are protected against cold, northerly winds. More northern higher vascular plant and moss species occur on north-facing slopes and in narrow crevasses. Considerable variations in altitude (up to 200 m) at this latitude (62–63°N) have resulted in altitudinal zoning. As a consequence, frosts occur 10–30 days earlier in the elevated areas. Also the numerous lakes have a substantial effect on the microclimate. The forest cover has been considerably transformed by selective and clear cutting. However, most of the forest communities have survived or recovered due to the relatively small number of trees removed as well as the natural dynamics of the forests. In contrast with the rest of Zaonezhye, there is practically no agricultural development in this terrain.

In this geographical terrain (No. 1 in Fig. 1), the forest cover consists mainly of pine forests, growing on rocky ground, and pine-dominated forests of Myrtillus type, growing on tectonic blocks that are covered by a thin layer of unconsolidated sediments. Other predominant forest types include mesic, pine- or spruce-dominated stands of Myrtillus type on the slopes and in the depressions between the ridges. These forests are characterized by diverse ground vegetation and complex plant communities. Birch-dominated stands make up less than 5% of the area covered by forests of Myrtillus type. However, their ground vegetation is diverse, including combinations of herbaceous species, motley grass and Myrtillus patches. On average, these plant communities are restricted to relatively small areas.

Paludified glacial terrain of hills and ridges, dominated by pine habitats (No. 2 in Fig. 1)

This terrain type covers 30% of the tectonic-denudation landscapes (Fig. 3). Its glacial relief comprises of plains, intersected by gently sloping, flat-topped ridges.
without a well-defined foot of the hill. Altitudes vary between 60 and 120 m above sea level and vertical ruggedness is 30–40 m. Quaternary sediments consist mainly of moraine that forms a 4–7 m layer, covering 70–80% of the crystalline basement and evening out the rugged bedrock. In parts of the terrain, also moraine drumlins contribute to the ridge pattern. Overall, mires cover approximately 20% of the terrain and open mires 8%. These eutrophic and mesotrophic mires contain a diverse flora and a variety of plant communities. The hydrographic network is well developed and uniform. The largest rivers are between 10 km and 30 km long. Lakes account for approximately 7% of the terrain. The soil cover is dominated by acidic, sandy loam and loamy burozemds (Cambisols). These highly fertile soils are areazonal and provide good conditions for a relatively high biological diversity for Karelia. With the exception of the western parts of the terrain, the gently sloping landscape and the minor variations in altitude have created a uniform microclimate. In the western parts, Lake Onega evens out considerable variations in temperature.

Vegetation has been markedly transformed by long-term slash-and-burn farming of fertile land as well as continuous selective and clear cutting. However, forest regeneration has been successful over most of the area and plant communities have largely been restored to their original state. Nowadays, the forest cover is characterised by a mosaic of fresh pine and spruce forests of Myrtillus type with nemoral elements in the ground vegetation. Other common vegetation types include birch forests of Myrtillus type as well as herbaceous birch forests, growing on abandoned agricultural land. Also these forests have nemoral elements in the ground vegetation. Grey alder (Alnus incana) forests with a large proportion of mountain ash (Sorbus aucuparia) and European birdcherry (Padus racemosa) often grow on the most fertile sites. Spruce is absent in these stands. Some Sphagnum habitats are occupied by low-productive secondary spruce and birch stands. The average contour of the plant communities is 120 m long.

Paludified lacustrine-glacial hill terrain, dominated by pine stands (No.3 in Fig. 1)

The relief of this terrain has been affected by the regression of Lake Onega (Fig.4). It makes up 30% of the tectonic-denudation landscapes. Its gently sloping, undulating plain is formed through accumulation and abrasion (of former lake bottom). Active movement along crystalline faults has produced small ridges, although they are not characteristic of this terrain. Absolute altitudes of watersheds are no more than 60 m above sea level and vertical ruggedness is 5–20 m. Overall, mires make up 20% of the terrain. Open mires account for 6% of the terrain. Due to their lacustrine origin, mires are predominantly mesotrophic or eutrophic. Usually peat is underlain by sapropel, lake clay and silt. These features have resulted in diverse plant communities and a rich flora.

Long and narrow lakes, confined to fault zones, determine the hydrographic conditions of the terrain. Lakes cover no more than 10 % of the area (excluding Unitsa Bay and a small portion of Lizhma Bay). Small streams that are less than 5 km long are distributed evenly throughout the area. The diverse soil cover consists of dark, acidic sandy loam and loam burozemon shungite, marshland humus gley and lowland peat soils. These fertile soils provide good conditions for a variety of species and plant communities. In addition, the microclimate is uniform across the terrain. However, the area has been heavily affected by human activities, including forest cutting and agriculture. There is an increasing amount of highly fertile soils (on land formerly used for agriculture), covered by secondary forests or secondary forest and meadow communities. The forest cover is a mosaic of fresh pine and birch forests with a diverse ground cover (motley grass, motley grass-bilberry, grass-bilberry, etc.). Also pine forestswith Sphagnum are widespread. Spruce forests make up only a
small percentage of the area, but their ground cover is diverse. Birch communities are mostly confined to abandoned agricultural land. All these forest types host a variety of woody and shrub species, including nemoral species such as lime, elm and currant. The average contour of the plant communities is 120 m long.

Normally paludified lacustrine and lacustrine-glacial plains, dominated by spruce, have indistinct boundaries, although their core areas are well defined. This landscape type comprises the following geographical terrains:

Paludified terrain of moraine plains, dominated by spruce habitats (No. 4 in Fig. 1)

This is the dominant terrain type, covering 50% of the paludified landscapes of lacustrine and lacustrine-glacial plains (Fig. 5). Its glacial relief consists of a plain with gently sloping hills and flat-topped ridges that lack a well-defined foot of the hill. Altitudes vary between 50 and 90 m above sea level and vertical ruggedness is 10–30 m. Quaternary deposits consist of a 4–7 m thick layer of moraine, which covers 90–100% of the crystalline basement and smoothes the ruggedness of the bedrock. In parts of the terrain, a ridge relief is formed by moraine drumlins. Mires make up about 50% and open mires 15% of the terrain. These eutrophic and mesotrophic mires contain a diverse flora and a variety of plant communities. The hydrographic network is well developed and uniform. Rivers are between 10 km and 30 km long and there are practically no lakes. The soil cover is dominated by acidic, sandy loam and loamy burozems. The gently sloping landscape and the minor variations in altitude have created a uniform microclimate. However, Lake Onega evens out considerable variations in temperature in its vicinity. Vegetation has been considerably transformed by long-term slash-and-burn cultivation of fertile land as well as continuous selective and clear cutting. However, forest regeneration has been successful over most of the area and plant communities have largely been restored to their original state. Nowadays, the forest cover is characterised by a mosaic of fresh bilberry spruce forests that grow on the enriched ground. Other common vegetation types include bilberry, bilberry-grass and wide-grass aspen and birch forests. The most fertile soils host plant communities, consisting of speckled alder as well as extensive mountain ash and European birdcherry stands. In these communities, spruce is absent in the undergrowth. Some *Sphagnum* habitats are occupied by low-productive secondary spruce and birch stands. The average contour of the plant communities is 120 m long.

Moderately paludified, topographically complex aqueo-glacial terrain, dominated by pine stands (No. 5 in Fig 1)

This terrain type makes up approximately 20% of the landscape area (Fig. 6). Fluvioglacial landforms include radial ridges (eskers), associated with fluvioglacial deltas. The terrain extends for over 30 km from northwest to southeast. Altitudes vary between 5 m and 15 m. Absolute altitudes of watersheds are no more than 80 m above sea level. Overall, mires cover up to 20% of the terrain, while open mires account for 5% of the terrain. Raised bogs with low mineral concentrations are common. There are no lakes in the terrain, and streams are less than 5 km long creeks. Microclimatic conditions remain more or less the same throughout the terrain. The soil cover consists of podzols and leptosols. More fertile sites include clasts of local basic and shungite-bearing rocks. Ridges and wide delta-like areas are used for agriculture. The forest cover is considerably transformed. It shows a mosaic pattern (Fig.) of pine, aspen and birch stands, growing in fresh bilberry habitats with diverse ground
vegetation (motley grass, motley grass-bilberry, grass-bilberry, etc.). Often speckled alder grows on abandoned agricultural land. Wet habitats are occupied by *Sphagnum*. Spruce stands are few. The undergrowth consists of currant, lime, buckthorn and birdcherry. The average contour of the plant communities is 70 m.

Highly paludified lacustrine-glacial terrain of plains, dominated by spruce habitats (No. 6 in Fig. 1)

This terrain type makes up 30% of the landscapes (Fig. 7). Its relief consists of a plain with gently sloping hills. Absolute altitudes are estimated at no more than 80 m above sea level and vertical ruggedness is 5–20 m. Structural denudation landforms are completely covered by unconsolidated sediments, which are dominated by a 6–7 m thick layer of varved clay. Overall, mires make up 70% of the area, while open mires account for 30% of the area. Mires are predominantly eutrophic and mesoeutrophic and their flora consist of both marshland and forest species. Streams are less than 5 km long and lakes cover no more than 5% of the terrain. The microclimate is uniform across the terrain. Well-drained eluvial, surface and gley loam soils support highly productive forests. However, the forest cover has been totally transformed by selective and clear cutting as well as agriculture. Nowadays, secondary forests dominate most of the area, including abandoned agricultural land. The most common forests are aspen, birch and speckled alder stands of bilberry and horsetail types. These forests have succeeded spruce stands, which are characteristic of the terrain. Black alder communities are encountered on stream-irrigated sites. Paludified sites are dominated by pine stands with sedge and *Sphagnum*. The average contour of the plant communities is 150 m.

REFERENCES

Fig. 2 Forest structure in a mildly paludified denudation-tectonic ridge terrain dominated by pine habitats (fragment).

<table>
<thead>
<tr>
<th>Altitude mark</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of BGC</td>
<td>dry meadow</td>
<td>cutten area</td>
<td>megamast pine forest</td>
<td>bilberry pine forest</td>
<td>gräsk bilberry birch forest</td>
<td>gräsk bilberry birch forest</td>
<td>bilberry pine forest</td>
<td>cutten area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>40%</td>
<td>20%</td>
<td>30%</td>
<td>15%</td>
<td>20%</td>
<td>20%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Fig. 3 Forest structure in glacial hilly-ridge mid-paludified terrain dominated by pine habitats (fragment).

<table>
<thead>
<tr>
<th>Altitude mark</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of BGC</td>
<td>bilberry pine forest</td>
<td>bilberry pine forest</td>
<td>tundridges forest</td>
<td>tundridges forest</td>
<td>bilberry pine forest</td>
<td>gräsk bilberry birch forest</td>
<td>gräsk bilberry birch forest</td>
<td>bilberry pine forest</td>
<td>cutten area</td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>40%</td>
<td>20%</td>
<td>30%</td>
<td>15%</td>
<td>20%</td>
<td>20%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Fig. 4 Forest structure in lacustrine-glacial hilly mid-paludified terrain dominated by pine stands (fragment).

Fig. 5 Forest structure in mid-paludified morainic plain terrain dominated by spruce habitats (fragment).
Fig. 6. Forest structure in aqueo-glacial topographically complex mildly paludified terrain dominated by pine stands (fragment).

Fig. 7. Forest structure in highly paludified lacustrine-glacial plain terrain dominated by spruce habitats (fragment).
2.3 The structure of forest land and forest stands in Zaonezhye Peninsula

Boris Raevsky* and Nikolay Puteshov**

* Directorate for Regional protected areas of the Republic of Karelia, 66 Rigachin St. 185005, Petrozavodsk, Karelia, Russia.
Corresponding author Boris Raevsky. E-mail: oopt@karelia.ru

E-mail: ecopetr@karelia.ru

Introduction

Zaonezhye Peninsula (Zaonezhye) is known both inside and outside of Russia as an exceptionally valuable natural and cultural territory. Currently there is a clear trend towards the intensification of the exploitation of forest and mineral resources as well as increased recreational pressure in Karelia, particularly in Zaonezhye. Therefore, the creation of a protected area network, aiming at preserving the most valuable objects under different threats, becomes of paramount importance. At present there are 22 regional protected areas in the peninsula, covering 2500 ha. The largest among them is the Klim-gora landscape nature monument (approximately 600 ha). Kizhi federal zoological reserve (zakaznik), which covers 50 000 ha, is located southeast of the peninsula. The main objectives of this reserve are to preserve natural values of the Kizhi skerries and to protect nesting places of waterfowl (Figure 1). The Kizhi open-air museum and its buffer zone are within the boundaries of the reserve and they cover a large proportion of it. The open-air museum is characterized by landscapes that have been under a heavy human influence.

Results

Forest ecosystems are the most dynamic components of natural landscapes due to their biological and ecological characteristics as well as their economic value. Therefore, forests require special protection. The establishment of a large-scale protected area on Zaonezhye is crucial for the conservation of forest communities; primarily pine forests, which are most valuable from ecological, biological and recreational point of view.

In 2013, Karelian Research Center published a monograph which summarized research data concerning esker landscapes situated in the middle part of Zaonezhye Peninsula (Gromtsev 2013). The authors have used the results of the publication as scientific arguments for the establishment of the Zaonezhye landscape reserve. In 2013 the NGO “SPOK” also developed arguments for the establishment of the Zaonezhye nature park (Documentations... 2013; see Figure 1).
According to modern knowledge, Zaonezhye is located within the Fennoscandian middle taiga subzone. Its area is divided into western and eastern parts that differ clearly in their landscape features. The transition zone between them divides two contrasting types of geographical landscapes in line with the villages of Velikaya Guba, Velikaya Niva and Shunga. Areas to the west of these villages are dominated by moderately paludified denudation-tectonic esker landscapes; whereas areas to the east are dominated by moderately waterlogged lacustrine and lacustrine-glacial lowland landscapes. Pine habitats prevail in the west, while spruce habitats dominate in the east (Gromtsev 2013). The landscape reserve (LR), proposed by the Karelian Research Centre, covers a total area of 106,373 ha. It is located in its entirety within the boundaries of the former landscape type. On the contrary, the nature park (NP) proposed by the NGO “SPOK”, which covers 107,862 ha, lies mostly within the boundaries of the latter landscape type. Together these planned protected areas cover roughly two thirds of Zaonezhye Peninsula. According to the Ministry of nature management and environment of the Republic of Karelia (1/1/2012), forests cover 81.9% and 87.5% of the protected areas respectively. The planned landscape reserve and nature park share 25% of their territories and 22% of their forest areas. Comparative analysis of the structure of forest land (lesnoi fond in Russian) shows the level of anthropogenic transformation in the two protected areas. It also suggests that characteristics of intact forest communities are preserved mainly in pine stands.

Analysis of the land categories of forest land in LR and NP (Table 1) shows that the proportion of forest areas is relatively high: 79.4% and 86.9% respectively. In the Karelian context, this suggests, first and foremost, moderate or low paludification of the territory. Wetlands cover no more than 5% of the area. Practically all of the forest areas are covered by forests (99.0% in LR and 96.4% in NP). At the same time, the proportion of forest plantations is higher in LR (19.7%) than in NP (13.4%). This suggests that artificial reforestation has been widely used on the peninsula at least since the middle of the 20th century.

![Fig. 1. Protected areas of Zaonezhye peninsula.](image)
Table 1. Distribution of different land categories of forest land (*lesnoi fond*) in the planned protected areas*

<table>
<thead>
<tr>
<th>Land category</th>
<th>Landscape reserve</th>
<th>Nature park</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area, ha</td>
<td>Structure, %</td>
</tr>
<tr>
<td>Total area of forest land (lesnoi fond)</td>
<td>87138</td>
<td>100</td>
</tr>
<tr>
<td>Total forest area, including:</td>
<td>69227</td>
<td>79.4 (100)</td>
</tr>
<tr>
<td>Forest-covered areas</td>
<td>68520</td>
<td>78.6 (99.0)</td>
</tr>
<tr>
<td>Forest plantations</td>
<td>13518</td>
<td>15.5 (19.7)</td>
</tr>
<tr>
<td>Total of bare forest land, including:</td>
<td>705</td>
<td>0.8 (100)</td>
</tr>
<tr>
<td>Open plantations</td>
<td>147</td>
<td>0.2 (20.9)</td>
</tr>
<tr>
<td>Forest nurseries and seed orchards</td>
<td>99</td>
<td>0.1 (14.0)</td>
</tr>
<tr>
<td>Open stands</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fire sites</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Dead plantations</td>
<td>9</td>
<td>–</td>
</tr>
<tr>
<td>Felling areas</td>
<td>447</td>
<td>0.5 (63.4)</td>
</tr>
<tr>
<td>Forest clearings and waste-land</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Total of non-forest areas, including:</td>
<td>17912</td>
<td>20.6 (100)</td>
</tr>
<tr>
<td>Arable land</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hay meadows</td>
<td>88</td>
<td>0.1 (0.5)</td>
</tr>
<tr>
<td>Pastures</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Water area</td>
<td>12873</td>
<td>14.8 (71.9)</td>
</tr>
<tr>
<td>Gardens and berry fields</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Roads and clearings</td>
<td>243</td>
<td>0.3 (1.4)</td>
</tr>
<tr>
<td>Buildings</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Wetlands</td>
<td>4355</td>
<td>5.0 (24.3)</td>
</tr>
<tr>
<td>Sand</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Other non-forest areas</td>
<td>353</td>
<td>0.4 (2.0)</td>
</tr>
</tbody>
</table>

* The proportion of sub-categories within the land categories of forest land is shown in parentheses.

Felling areas predominate the structure of bare forest land in both territories (63.4 and 66.1%) but their area is four times larger in NP than in LR. Felling areas also occupy a considerable proportion of bare forest land within the total forest land.

The proportion of non-forest areas is less than 21% of the total forest land in the examined protected areas. Water areas and wetlands dominate their structure. The proportion of water objects in the total structure of the forest land roughly corresponds to the average figure in Karelia (approximately 10%), whereas the proportion of mires is considerably lower than average for the paludified forest land of Karelia (23.7%).

In general, structural analysis of the forest area indicates relatively extensive exploitation and anthropogenic transformation of the nature park in comparison with the landscape reserve.
Forests dominated by coniferous species cover 68.4% and 59.3% of forest-covered areas in LR and NP respectively (Table 2).

Table 2. Distribution of forest-covered areas, based on the dominant species.

<table>
<thead>
<tr>
<th>Dominant species</th>
<th>Landscape reserve</th>
<th>Nature park</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area, ha</td>
<td>%</td>
</tr>
<tr>
<td>Pine (Pinus sylvestris)</td>
<td>28693</td>
<td>41.9</td>
</tr>
<tr>
<td>Spruce (Picea x fennica)</td>
<td>18105</td>
<td>26.4</td>
</tr>
<tr>
<td>Larch (Larix sibirica)</td>
<td>33</td>
<td>0.05</td>
</tr>
<tr>
<td>Birch (Betula spp.)</td>
<td>18308</td>
<td>26.7</td>
</tr>
<tr>
<td>Speckled alder (Alnus incana)</td>
<td>1264</td>
<td>1.8</td>
</tr>
<tr>
<td>Black alder (Alnus glutinosa)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Aspen (Populus tremula)</td>
<td>2117</td>
<td>3.1</td>
</tr>
<tr>
<td>Total</td>
<td>68520</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A high proportion (90% or more) of forests, dominated by coniferous species, is typical for intact taiga forests. A higher proportion of deciduous stands, dominated by birch, alder and aspen, indicate both moderate human influence and relatively high soil fertility in the area. Pine dominates in the landscape reserve while spruce dominates in the nature park, which reflects the characteristics of the aforementioned landscapes. Siberian larch is present in forest plantations. Next, we will use a set of parameters to examine the distribution of forest stands in the main coniferous structures.

Coniferous stands show a particular age class distribution (Table 3). For coniferous species, each age class equals 20 years. Approximately 68% of coniferous stands in LR and 51% of pine and spruce stands in NP fall into age classes I-V. For intact taiga forests, the opposite is true. In these forests, more than 70% of forest stands belong to age classes VIII-XII. In the planned protected areas, the proportion of stands in these age classes is no more than 17%. Thus, the distribution of age classes is a certain sign of considerable anthropogenic transformation of Zaonezhye forests.

Table 3. Age class distribution of coniferous forests.

<table>
<thead>
<tr>
<th>Age class</th>
<th>Landscape reserve</th>
<th>Nature park</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pine, ha</td>
<td>Spruce, ha</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>925.7</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>3950.2</td>
<td>13.9</td>
</tr>
<tr>
<td>3</td>
<td>4903.5</td>
<td>17.2</td>
</tr>
<tr>
<td>4</td>
<td>4749.3</td>
<td>16.7</td>
</tr>
<tr>
<td>5</td>
<td>4740.8</td>
<td>16.6</td>
</tr>
<tr>
<td>6</td>
<td>2671.7</td>
<td>9.4</td>
</tr>
<tr>
<td>7</td>
<td>2349.6</td>
<td>8.2</td>
</tr>
<tr>
<td>8</td>
<td>2104.3</td>
<td>7.4</td>
</tr>
<tr>
<td>9</td>
<td>1678.9</td>
<td>5.9</td>
</tr>
<tr>
<td>10</td>
<td>313.8</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>76.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>
According to species or group of species dominating either within the ground cover layer or in the undergrowth, different forest types are being distinguished (Table 4). Forest type is a site in the forest which is characterized by uniform forest-growing conditions, similar species composition and ground cover and which demands the same silvicultural methods (Sukachev & Zonn 1961).

Table 4. Forest types that are common in pine dominated forests of Zaonezhye peninsula.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Indicatory species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladonia</td>
<td>lichens of genus Cladonia spp.</td>
</tr>
<tr>
<td>Rocky</td>
<td>Cladoniaceae spp. and mosses on outcrops of cliffs</td>
</tr>
<tr>
<td>Vaccinium</td>
<td>Vaccinium vitis-idaea</td>
</tr>
<tr>
<td>Myrtillus</td>
<td>Vaccinium myrtillus</td>
</tr>
<tr>
<td>Oxalis</td>
<td>Oxalis acetosella</td>
</tr>
<tr>
<td>Long mosses</td>
<td>Polytrichum spp.</td>
</tr>
<tr>
<td>Herbal on bogs</td>
<td>Various herbs in waterlogged forests</td>
</tr>
<tr>
<td>Meadowsweet</td>
<td>Filipendula ulmaria</td>
</tr>
<tr>
<td>Sedge-Sphagnum</td>
<td>Cyperaceae spp. and Sphagnum spp.</td>
</tr>
<tr>
<td>Sphagnum</td>
<td>Sphagnum spp.</td>
</tr>
<tr>
<td>Ledum</td>
<td>Ledum palustre</td>
</tr>
</tbody>
</table>

The ecological spectrum of coniferous forests in Zaonezhye seems relatively normal. Here, coniferous forests are represented by seven main forest types, as well as a separate type of drained stands (Table 5.)

Table 5. Distribution of coniferous forests by forest type.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Landscape reserve</th>
<th>Nature park</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pine, ha %</td>
<td>Spruce, ha %</td>
</tr>
<tr>
<td>Cladonia</td>
<td>676</td>
<td>2.4</td>
</tr>
<tr>
<td>Vaccinium</td>
<td>3576</td>
<td>12.5</td>
</tr>
<tr>
<td>Myrtillus</td>
<td>16700</td>
<td>58.2</td>
</tr>
<tr>
<td>Oxalis</td>
<td>2888</td>
<td>10.1</td>
</tr>
<tr>
<td>Long mosses</td>
<td>1142</td>
<td>4.0</td>
</tr>
<tr>
<td>Herbal on bogs</td>
<td>35</td>
<td>0.1</td>
</tr>
<tr>
<td>Sphagnum</td>
<td>3507</td>
<td>12.2</td>
</tr>
<tr>
<td>Drained stands</td>
<td>170</td>
<td>0.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>28694</td>
<td>100</td>
</tr>
</tbody>
</table>

Normally spruce forests are dominated by the Myrtillus type. In forest inventories, these types are referred to as mixed-herb Myrtillus, Myrtillus and moist Myrtillus forests. It is commonly known that during natural reforestation spruce is a more demanding species. Therefore, it occupies relatively homogenous habitats with the most favourable conditions. Meanwhile, pine is ecologically more flexible and dominates less favourable habitats with more diverse habitat conditions. The characteristics of
Zaonezhye forests include the relatively unvaried typological spectrum of pine and spruce. Also, the proportion of *Myrtillus* pine forests in denudation-tectonic landscapes is high – nearly as high as the proportion of spruce forests - indicating that there are relatively highly fertile mineral soils in the landscape reserve. The proportion of waterlogged forests (49.4%) within the nature park is twice as large as within the landscape reserve (25.0%), which is typical for lacustrine-glacial lowland landscapes.

The forests of the peninsula show a distinctive distribution pattern of site quality classes (Table 5). The productivity of coniferous stands varies from classes I to Va and Vb, which is relatively common in Karelia. Characteristically, a particularly high proportion of pine stands belong to class III. These stands constitute nearly half of all pine forests in the landscape reserve. Pine stands cover 1.7 times larger area than spruce stands.

Table 6. Distribution of coniferous forests by site quality class (bonitet).

<table>
<thead>
<tr>
<th>Site class</th>
<th>Landscape reserve</th>
<th>Nature park</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pine, ha</td>
<td>%</td>
</tr>
<tr>
<td>I</td>
<td>58</td>
<td>0.2</td>
</tr>
<tr>
<td>II</td>
<td>3422</td>
<td>11.9</td>
</tr>
<tr>
<td>III</td>
<td>13229</td>
<td>46.1</td>
</tr>
<tr>
<td>IV</td>
<td>6167</td>
<td>21.5</td>
</tr>
<tr>
<td>V</td>
<td>4425</td>
<td>15.4</td>
</tr>
<tr>
<td>Va</td>
<td>1392</td>
<td>4.9</td>
</tr>
<tr>
<td>Vb</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TOTAL</td>
<td>28693</td>
<td>100</td>
</tr>
<tr>
<td>Average index</td>
<td>III.5</td>
<td>–</td>
</tr>
</tbody>
</table>

Uneven-aged forest stands are a typical feature of primeval forests in the taiga zone of the European part of Russia. Normally these forest stands dominate coniferous stand structures of intact forests. In general, uneven-aged forest stands provide a dynamic balance between growth and dieback processes.

Forest inventory data is crucial for detecting primeval forests in existing and planned protected areas as well as calculating certain parameters of their natural age structure. We have used the classification of S. Zyabchenko (1984) as the methodical basis for analyzing the pine forests of Zaonezhye. We have only analyzed pine-dominated stands in age classes VII and higher. A forest stand is considered absolutely uneven-aged when the following conditions are met: a) there is a minimum of two generations of pine; b) the growing volume of the structure is no more than 40%; c) the oldest generation is at least 180 years old; d) there should be a difference of more than three age classes between generations. In younger age classes, as well as when the proportion of growing volume in one generation is at least 50%, forests are considered relatively uneven-aged. If there has been only one generation of pine, the stand is considered potentially even-aged. The results of the classification of pine stands in the landscape reserve and the nature park are presented in Tables 6, 7 and 8. We have used the following abbreviations: P – pine; S – spruce; L – larch; B – birch; As – aspen; Ali – speckled alder (*Alnus incana*); Alg – black alder (*Alnus glutinosa*). The ages of the elements are described in subscript.
Table 7. Distribution of pine stands in the Zaonezhye landscape reserve by age structure, forest type and site quality class.

<table>
<thead>
<tr>
<th>№</th>
<th>Forest type</th>
<th>Site class</th>
<th>Composition and structure (in tenth parts of growing volume)</th>
<th>Growing volume, m³/ha</th>
<th>Total area, ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Absolutely uneven-aged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Myrtillus</td>
<td>III</td>
<td>3P₅₀ 2P₁₀ 3S₂₀ 1B₀ 1A₀ 5A₅₀</td>
<td>270</td>
<td>53.0</td>
<td>80.5</td>
</tr>
<tr>
<td>2</td>
<td>Sedge-Sphagnum</td>
<td>V</td>
<td>3.7P₁₀ 2.7P₁₀ 1.3S₁₀ 2.3B₁₀</td>
<td>84</td>
<td>5.7</td>
<td>8.7</td>
</tr>
<tr>
<td>11</td>
<td>Long mosses</td>
<td>V</td>
<td>4CP₀ 2P₀ 2S₀ 2B₀</td>
<td>120</td>
<td>3.2</td>
<td>4.9</td>
</tr>
<tr>
<td>12</td>
<td>Ledum</td>
<td>V</td>
<td>4P₁₀ 3P₀ 1S₁₀ 2B₀</td>
<td>111</td>
<td>3.9</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>65.8</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relatively uneven-aged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Myrtillus</td>
<td>II</td>
<td>4P₁₀ 3P₀ 2B₀ 1A₀ 5A₅₀</td>
<td>330</td>
<td>2.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>Myrtillus</td>
<td>III</td>
<td>5.3P₁₀ 2.2P₀ 1.5S₁₀ 1.5B₀ 0.5A₀ 5A₅₀</td>
<td>253</td>
<td>332.8</td>
<td>18.4</td>
</tr>
<tr>
<td>3</td>
<td>Myrtillus</td>
<td>IV</td>
<td>5.7P₁₀ 2P₀ 2S₀ 2B₀ 1A₀ 5A₅₀</td>
<td>183</td>
<td>234.8</td>
<td>13.0</td>
</tr>
<tr>
<td>4</td>
<td>Myrtillus</td>
<td>V</td>
<td>3P₁₀ 2.9P₀ 0.5S₀ 0.9B₀ 0.5A₀ 5A₅₀</td>
<td>155</td>
<td>35.0</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>Vaccinium</td>
<td>IV</td>
<td>5.7P₁₀ 3.1P₀ 0.8S₀ 0.4B₀ 0.4A₀ 8A₅₀</td>
<td>194</td>
<td>142.5</td>
<td>7.9</td>
</tr>
<tr>
<td>4</td>
<td>Vaccinium</td>
<td>V</td>
<td>5.8P₁₀ 3.7P₀ 0.5B₀ 0.8A₀ 1A₀ 5A₅₀</td>
<td>133</td>
<td>154.5</td>
<td>8.6</td>
</tr>
<tr>
<td>5</td>
<td>Rocky</td>
<td>V</td>
<td>6.5P₁₀ 2.8P₀ 0.7S₀ 0.3B₀ 0.2A₀ 5A₅₀</td>
<td>72.4</td>
<td>126</td>
<td>7.0</td>
</tr>
<tr>
<td>6</td>
<td>Rocky</td>
<td>Vₐ</td>
<td>6.4P₀ 2.9P₀ 0.7S₀ 0.2B₀ 0.2A₀ 5A₅₀</td>
<td>67</td>
<td>27.5</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>Sedge-Sphagnum</td>
<td>V</td>
<td>6.5P₁₀ 3P₀ 0.3S₀ 0.2B₀ 0.1A₀ 5A₅₀</td>
<td>113</td>
<td>227.6</td>
<td>12.6</td>
</tr>
<tr>
<td>8</td>
<td>Sedge-Sphagnum</td>
<td>Va</td>
<td>4.3P₁₀ 5.3P₀ 0.4B₀ 0.4A₀ 8A₅₀</td>
<td>83</td>
<td>179.1</td>
<td>9.9</td>
</tr>
<tr>
<td>9</td>
<td>Long mosses</td>
<td>IV</td>
<td>5P₁₀ 4P₀ 1B₀ 1A₀ 5A₅₀</td>
<td>111</td>
<td>10.1</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>Ledum</td>
<td>V</td>
<td>6.3P₁₀ 3.2P₀ 0.4S₀ 0.1B₀ 0.2A₀ 5A₅₀</td>
<td>121</td>
<td>66.6</td>
<td>3.7</td>
</tr>
<tr>
<td>11</td>
<td>Ledum</td>
<td>Va</td>
<td>5P₀ 5P₀</td>
<td>42</td>
<td>3.7</td>
<td>0.2</td>
</tr>
<tr>
<td>12</td>
<td>Sphagnum</td>
<td>V</td>
<td>6.8P₀ 2.6P₀ 0.6S₀ 0.5B₀ 0.5A₀ 5A₅₀</td>
<td>77</td>
<td>87.5</td>
<td>4.8</td>
</tr>
<tr>
<td>13</td>
<td>Sphagnum</td>
<td>Va</td>
<td>6.9P₁₀ 3P₀ 0.1S₀ 0.1B₀ 0.1A₀ 5A₅₀</td>
<td>76</td>
<td>143</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>1805.8</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Potentially even-aged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Herbal on bogs</td>
<td>II</td>
<td>4P₀ 1.5S₀ 1.5B₀ 4.5A₀ 5A₅₀</td>
<td>345</td>
<td>17.1</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>Herbal on bogs</td>
<td>III</td>
<td>5.4P₀ 1.1S₀ 1.5B₀ 0.5A₀ 5A₅₀</td>
<td>320</td>
<td>210.5</td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>Oxalis</td>
<td>II</td>
<td>5P₀ 3S₀ 1.5B₀ 0.5A₀ 0.5S₀ 5A₅₀</td>
<td>331</td>
<td>5.5</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>Oxalis</td>
<td>III</td>
<td>5.1P₀ 2.5S₀ 2.3B₀ 0.8S₀ 0.5A₀ 5A₅₀</td>
<td>318</td>
<td>63</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>Oxalis</td>
<td>IV</td>
<td>5.7P₀ 2.9P₀ 2.3B₀ 0.8S₀ 0.5A₀ 5A₅₀</td>
<td>264</td>
<td>70.6</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td>Myrtillus</td>
<td>II</td>
<td>3P₀ 1.5S₀ 2A₀ 1.5B₀ 5A₅₀</td>
<td>362</td>
<td>4.7</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>Myrtillus</td>
<td>III</td>
<td>5.9P₀ 2.3S₀ 1.5B₀ 0.5A₀ 5A₅₀</td>
<td>278</td>
<td>951.4</td>
<td>23.5</td>
</tr>
<tr>
<td>8</td>
<td>Myrtillus</td>
<td>IV</td>
<td>6.2P₀ 2.1S₀ 1.7B₀ 0.5A₀ 5A₅₀</td>
<td>190</td>
<td>370</td>
<td>9.2</td>
</tr>
<tr>
<td>9</td>
<td>Vaccinium</td>
<td>III</td>
<td>7P₀ 1.5S₀ 1.5B₀ 0.5A₀ 5A₅₀</td>
<td>185</td>
<td>13.9</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>Vaccinium</td>
<td>IV</td>
<td>8.1P₀ 1.5S₀ 1B₀ 0.5A₀ 5A₅₀</td>
<td>178</td>
<td>397</td>
<td>9.8</td>
</tr>
<tr>
<td>11</td>
<td>Vaccinium</td>
<td>V</td>
<td>8.6P₀ 1.5S₀ 0.4B₀ 0.5A₀ 5A₅₀</td>
<td>141</td>
<td>319</td>
<td>7.9</td>
</tr>
<tr>
<td>12</td>
<td>Rocky</td>
<td>V</td>
<td>9.5P₀ 2.9S₀ 0.5B₀ 0.5A₀ 5A₅₀</td>
<td>99</td>
<td>81.9</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>Rocky</td>
<td>Vₐ</td>
<td>9P₀ 1.5S₀ 0.5B₀ 0.5A₀ 5A₅₀</td>
<td>71</td>
<td>23.5</td>
<td>0.6</td>
</tr>
<tr>
<td>14</td>
<td>Meadowsweet</td>
<td>IV</td>
<td>5P₀ 2.5S₀ 1.5B₀ 0.5A₀ 5A₅₀</td>
<td>106</td>
<td>8.7</td>
<td>0.2</td>
</tr>
<tr>
<td>15</td>
<td>Meadowsweet</td>
<td>V</td>
<td>5.5P₀ 1.5S₀ 1.5B₀ 0.5A₀ 5A₅₀</td>
<td>128</td>
<td>7</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Table 8. Distribution of pine stands in the Zaonezhye nature reserve by age structure, forest type and site quality class.

<table>
<thead>
<tr>
<th>No.</th>
<th>Forest type</th>
<th>Site class</th>
<th>Composition and structure (in tenth parts of growing volume)</th>
<th>Growing volume m³/ha</th>
<th>Total area, ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Growing volume m³/ha</td>
<td>Total area, ha</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Absolute uneven-aged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Myrtillus</td>
<td>III</td>
<td>3P₁₁₂ 2P₂₁₀ 3S₁₁₂ 1B₁₀₀ 1A₉₀</td>
<td>270</td>
<td>53.0</td>
<td>73.8</td>
</tr>
<tr>
<td>4</td>
<td>Vaccinium</td>
<td>IV</td>
<td>5.8P₁₁₂ 2.8P₁₀₀ 1.4B₉₀</td>
<td>226</td>
<td>135.5</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>Sedge-Sphagnum</td>
<td>Vа</td>
<td>4P₁₁₂ 4P₂₁₀ 2B₂₁₀ +S₁₃₀</td>
<td>71</td>
<td>12</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>71.8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relatively uneven-aged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Myrtillus</td>
<td>III</td>
<td>5.7P₁₁₀ 2.3P₂₁₀ 2B₂₁₀ +A₉₀</td>
<td>237</td>
<td>100.9</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>Myrtillus</td>
<td>IV</td>
<td>5.8P₁₁₂ 2.8P₁₀₀ 1.4B₉₀</td>
<td>226</td>
<td>135.5</td>
<td>9.3</td>
</tr>
<tr>
<td>3</td>
<td>Vaccinium</td>
<td>IV</td>
<td>5.9P₁₁₂ 2.3P₁₁₀ 1S₁₃₀ 0.8B₉₀ 1A₉₀</td>
<td>204</td>
<td>259.1</td>
<td>17.7</td>
</tr>
<tr>
<td>4</td>
<td>Vaccinium</td>
<td>V</td>
<td>6.5P₁₁₂ 2.5P₁₁₀ 1B₁₀₀</td>
<td>156</td>
<td>84.7</td>
<td>5.8</td>
</tr>
<tr>
<td>5</td>
<td>Rocky</td>
<td>V</td>
<td>8P₁₁₀ 1.3S₁₃₀ 0.7B₉₀</td>
<td>133</td>
<td>61.3</td>
<td>4.2</td>
</tr>
<tr>
<td>6</td>
<td>Rocky</td>
<td>Vа</td>
<td>9P₁₁₀ 1S₁₃₀ +B₁₀₀</td>
<td>133</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>Oxalis</td>
<td>III</td>
<td>3P₁₁₀ 2P₂₁₀ 2.5S₁₃₀ 2.5B₁₀₀</td>
<td>215</td>
<td>31.0</td>
<td>2.1</td>
</tr>
<tr>
<td>8</td>
<td>Oxalis</td>
<td>IV</td>
<td>5.8P₁₁₀ 2.6P₁₀₀ 1.6S₁₃₀ +B₉₀</td>
<td>218</td>
<td>34.1</td>
<td>14.1</td>
</tr>
<tr>
<td>9</td>
<td>Herbal on bogs</td>
<td>III</td>
<td>6P₁₁₀ 2P₂₁₀ 1B₁₀₀</td>
<td>244</td>
<td>14</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>Meadowsweet</td>
<td>V</td>
<td>5P₁₁₀ 2P₂₁₀ 1B₁₀₀</td>
<td>168</td>
<td>6.2</td>
<td>0.4</td>
</tr>
<tr>
<td>11</td>
<td>Sedge-Sphagnum</td>
<td>Vа</td>
<td>5.7P₁₁₂ 3P₁₁₀ 1.3B₁₀₀ 1A₁₀₀</td>
<td>99</td>
<td>166.1</td>
<td>11.3</td>
</tr>
<tr>
<td>12</td>
<td>Long mosses</td>
<td>IV</td>
<td>3P₁₁₀ 2P₂₁₀ 1.5S₁₃₀ 1B₁₀₀ +A₁₀₀</td>
<td>169</td>
<td>12.7</td>
<td>0.9</td>
</tr>
<tr>
<td>13</td>
<td>Ledum</td>
<td>V</td>
<td>7P₁₁₀ 3P₁₀₀</td>
<td>94</td>
<td>6.8</td>
<td>0.5</td>
</tr>
<tr>
<td>14</td>
<td>Sphagnum</td>
<td>Vа</td>
<td>6P₁₁₀ 4P₂₁₀ +S₁₃₀</td>
<td>53</td>
<td>66.4</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>1464.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Potentially even-aged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Herbal on bogs</td>
<td>III</td>
<td>6P₁₁₀ 2.1S₁₃₀ 1.9B₁₀₀ +A₁₀₀</td>
<td>268</td>
<td>165.6</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>Oxalis</td>
<td>II</td>
<td>3P₁₁₂ 3S₁₁₀ 3A₁₀₀ 1B₉₀</td>
<td>336</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>Oxalis</td>
<td>III</td>
<td>5.5P₁₁₀ 2.5P₁₁₀ 1B₁₀₀</td>
<td>257</td>
<td>144.9</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>Oxalis</td>
<td>IV</td>
<td>6.5P₁₁₀ 2.2S₁₁₀ 1.3B₉₀</td>
<td>236</td>
<td>277.9</td>
<td>5.4</td>
</tr>
<tr>
<td>5</td>
<td>Myrtillus</td>
<td>II</td>
<td>3P₁₁₀ 2S₁₁₀ 2A₁₀₀ 2B₉₀</td>
<td>362</td>
<td>4.7</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table 9. The composition and structure of Zaonezhye pine stands, based on the type of age structure.

<table>
<thead>
<tr>
<th>Type of age structure</th>
<th>Composition and structure (in tenth parts of growing volume)</th>
<th>Average age class</th>
<th>Growing volume, m³/ha</th>
<th>Total area, ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape reserve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially even-aged</td>
<td>6.7P₁₄₀ 1.8S₁₁₀ 1.5B₉₀/As₈₀</td>
<td>7.5</td>
<td>184</td>
<td>4043.5</td>
<td>68.4</td>
</tr>
<tr>
<td>Absolutely uneven-aged</td>
<td>3.2P₁₉₀ 2.1P₉₀ 2.7S₁₇₀ 2B₉₀</td>
<td>10</td>
<td>237</td>
<td>65.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Relatively uneven-aged</td>
<td>6P₁₆₀ 3.3P₁₇₀ 0.7S₁₁₀/B₉₀/As₈₀</td>
<td>8</td>
<td>145</td>
<td>1805.8</td>
<td>30.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>5915.1</td>
<td>100</td>
</tr>
<tr>
<td>Nature park</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially even-aged</td>
<td>6.4P₁₄₀ 2S₁₂₀ 1.6B₉₀/As₈₀/Alg₉₀</td>
<td>7.7</td>
<td>168</td>
<td>5189.6</td>
<td>77.2</td>
</tr>
<tr>
<td>Absolutely uneven-aged</td>
<td>3.3P₁₉₀ 2.3P₉₀ 2.7S₁₇₀ 1.7Alg₁₀₀</td>
<td>10</td>
<td>223</td>
<td>71.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Relatively uneven-aged</td>
<td>5.8P₁₄₀ 3P₁₁₀ 0.5S₁₅₀ 0.7B₉₀</td>
<td>8.5</td>
<td>158</td>
<td>1464.3</td>
<td>21.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>6725.7</td>
<td>100</td>
</tr>
</tbody>
</table>

After analysing Tables 7, 8 and 9, we have come to the following conclusion: Absolutely uneven-aged stands represent the smallest share, amounting to only 1.1% of all types of age structures in both the landscape reserve and the nature park. Consequently, these forest-covered areas are least preserved from anthropogenic transformation. The absolutely uneven-aged *Myrtillus* pine stands of III site quality class indicated in Tables 6 and 7 are located in the forest compartment (*kvartal*) 117 of the Velikaya Guba forest district (*lesnichestvo*). The proportion of relatively uneven-aged stands is
30.5% in the landscape reserve and 21.7% in the nature park. Potentially even-aged pine stands dominate both planned protected areas, totaling 68.4% of the landscape reserve and 77.2% of the nature park.

The formation of potentially even-aged pine stands depends on a set of natural and anthropogenic factors. Natural factors include large fires and vast windfalls. The natural reforestation of potentially even-aged pine stands is expected within 20–40 years after these catastrophic events. The main anthropogenic factor is intensive felling, namely clear cutting, followed by natural or artificial reforestation. In the two planned protected areas, anthropogenic factors play a bigger part due to the long history of agriculture and high population density in Zaonezhye. According to Zyabchenko (1984), relatively uneven-aged pine stands appear after 60–80 years of natural afforestation of pine stands in open areas, namely fire sites. Alternatively, they can be formed under the influence of intensive selective logging. The latter is true for Zaonezhye. On the whole, anthropogenic transformation is more pronounced in the planned nature park than in the landscape reserve.

After analyzing Tables 6 and 7, we have come to the conclusion that the proportion of pine in the stand structure increases when the site quality class decreases. The biggest proportions of spruce are typical for highly productive, potentially even-aged pine stands of the Oxalis and Myrtillus types. Even though the two planned protected areas are located in different geographical landscapes their pine stands are characterized by similar structures (Table 9).

According to our analyses, the pine-dominated boreal forests of Zaonezhye Peninsula have been highly productive in the past. These forests have supplied quality construction material for the outstanding monuments of wooden architecture, for which Zaonezhye is famous. Despite the extent of anthropogenic transformation of ecosystems, there are still small areas of old-growth pine stands of high conservation and recreational value. As shown in Figures 2 and 3, nearly all of these areas are already located within protective forests. Average indicators for the planned landscape reserve and nature park are shown in Table 10. At present, a significant proportion of coniferous forests in the planned protected areas (LR = 50.5% and NP – 39.7%) are located in protective forests where clear cutting is prohibited. In general, the average indicators for these forests are higher than for commercial forests. There is a special interest in the forest compartments (kvartal) of the Tolvuya and Velikaya Niva forest districts (lesnichestvo), which are included in both the landscape reserve and the nature park.

Table 10. Average indicators for coniferous forests in the planned landscape reserve and nature park, based on inventories.

<table>
<thead>
<tr>
<th>Dominant species</th>
<th>Area, ha</th>
<th>Average age, years</th>
<th>Site class</th>
<th>Relative stand density</th>
<th>Growing volume, m³/ha</th>
<th>Average composition and structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape reserve</td>
<td>Protective forests</td>
<td>Pine</td>
<td>15443.2</td>
<td>96</td>
<td>III.5</td>
<td>0.67</td>
</tr>
<tr>
<td>Spruce</td>
<td>8184.8</td>
<td>93</td>
<td>III.7</td>
<td>0.70</td>
<td>173</td>
<td>5P2P2B1As+Ali,Alg</td>
</tr>
<tr>
<td>Larch</td>
<td>16.1</td>
<td>36</td>
<td>III.9</td>
<td>0.81</td>
<td>109</td>
<td>5B3L1S1P</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23644.1</td>
<td>95</td>
<td>III.6</td>
<td>0.68</td>
<td>178</td>
<td>5P2S2B1As+L,Ali,Alg</td>
</tr>
<tr>
<td>Commercial forests</td>
<td>Pine</td>
<td>13249.8</td>
<td>72</td>
<td>III.5</td>
<td>0.66</td>
<td>131</td>
</tr>
</tbody>
</table>
Nature park

<table>
<thead>
<tr>
<th>Tree</th>
<th>Diameter</th>
<th>Age</th>
<th>Height</th>
<th>Density</th>
<th>Crown Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spruce</td>
<td>9919.8</td>
<td>63</td>
<td>III.6</td>
<td>0.70</td>
<td>135</td>
</tr>
<tr>
<td>Larch</td>
<td>16.4</td>
<td>47</td>
<td>III.0</td>
<td>0.74</td>
<td>144</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23186.0</td>
<td>68</td>
<td>III.6</td>
<td>0.68</td>
<td>133</td>
</tr>
</tbody>
</table>

Protective forests

<table>
<thead>
<tr>
<th>Tree</th>
<th>Diameter</th>
<th>Age</th>
<th>Height</th>
<th>Density</th>
<th>Crown Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>10860.0</td>
<td>106</td>
<td>III.5</td>
<td>0.69</td>
<td>198</td>
</tr>
<tr>
<td>Spruce</td>
<td>7772.2</td>
<td>110</td>
<td>III.4</td>
<td>0.72</td>
<td>217</td>
</tr>
<tr>
<td>Larch</td>
<td>1.0</td>
<td>46</td>
<td>II.0</td>
<td>0.70</td>
<td>170</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18633.2</td>
<td>108</td>
<td>III.5</td>
<td>0.70</td>
<td>206</td>
</tr>
</tbody>
</table>

Commercial forests

<table>
<thead>
<tr>
<th>Tree</th>
<th>Diameter</th>
<th>Age</th>
<th>Height</th>
<th>Density</th>
<th>Crown Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>10328.3</td>
<td>96</td>
<td>IV.4</td>
<td>0.61</td>
<td>128</td>
</tr>
<tr>
<td>Spruce</td>
<td>17906.0</td>
<td>76</td>
<td>III.8</td>
<td>0.67</td>
<td>147</td>
</tr>
<tr>
<td>Larch</td>
<td>40.0</td>
<td>42</td>
<td>II.5</td>
<td>0.80</td>
<td>141</td>
</tr>
<tr>
<td>TOTAL</td>
<td>28274.3</td>
<td>83</td>
<td>IV.0</td>
<td>0.65</td>
<td>140</td>
</tr>
</tbody>
</table>

On the whole, when it comes to protecting forest ecosystems, the two proposed protected areas complement each other to some extent. However, the denudation-tectonic landscape of the landscape reserve seems more promising in terms of structure. Following the creation of a strict protected area (where cutting of dead and damaged stands is allowed only under exceptional circumstances), we would expect over 120-year-old pine stands to acquire features of intact pine forests within the next 50 years.

REFERENCES

Fig. 2. Spatial distribution of old-growth (older than 120 years) pine-dominated forests in planned Zaonezhye Nature (landscape) Reserve, northern part of Zaonezhye Peninsula.
Fig. 3. Spatial distribution of old-growth (older than 120 years) pine-dominated forests in planned Zaonezhye Nature Park, southeastern part of Zaonezhye Peninsula.
Old growth spruce-dominated forest in Zaonezhye (Photo Boris Rayevsky).
2.4 Forest structures and human impact on Zaonezhye Peninsula: a classification and case studies

Timo Kuuluvainen* and Olli-Pekka Tikkanen**

* Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsingin yliopisto, Finland.
** School of Forest Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
Corresponding authors Timo Kuuluvainen & Olli-Pekka Tikkanen
E-mail: Timo.Kuuluvainen@helsinki.fi
Tel: + 358504486146
E-mail: Olli-Pekka.Tikkanen@uef.fi
Tel: +358469210746

Introduction

Human population history and past land use has a profound and diverse effect on current forest landscapes and forest structures within them (Brumelis et al. 2011). In eastern Fennoscandia, transformation of forests to agricultural land and use of wood for construction and heating has created open cultural landscapes in surroundings of villages (Huttunen 1980, Tikkanen et al. 2014). In Karelia, the landscapes around the old villages are now, after their abandonment, recovering towards more natural stage (Tikkanen et al. 2014, Tikkanen & Chernyakova 2014).

Further away from the villages, slash and burn agriculture and other human activities have increased fire frequency, which has favored presence of pine and deciduous trees in forest landscapes and suppressed spruce (Huttunen 1980, Tikkanen & Chernyakova 2014). As a result, we can find a gradient of human impact with increasing naturalness as a function of increasing distance from villages (Tikkanen et al. 2014).

Zaonezhye peninsula has a long population history and it is has historically been more densely populated than many other areas in the Karelian Republic. In addition, industrial forestry has changed forest structure in many parts of the peninsula (see 2.3. in this volume). High intensity in forest use is known to lead to declining naturalness of forest structures including the amount and diversity of dead wood (Rouvinen et al. 2002). This is detrimental to many rare forest species, which are found in pristine forests and require abundance, diversity and long continuum of dead wood (Martikainen et al. 2000, Similä et al. 2003, Penttilä et al. 2004, Junninen et al. 2006). From the point of view of conservation of biodiversity and planning of conservation area networks it is critically important to ask 1) what effect has past human impact on modern day forest
structures and, especially, 2) can we still find primeval forests, which are potential habitats of rare species in Zaonezhye peninsula.

Methods

For this study, field inventories and forest structure measurements were carried out in August 2013 using the circular plot method. Each inventory plot had a radius of 15 m (0.07 ha). Plots were chosen subjectively to be representative of the studied forests area (see map, Fig. 1). All living and dead trees with a diameter of more than 10 cm were measured. A vertex device was used to examine trees along the plot borders to accurately define the plot size.

Results and discussion

According to the field observations and inventories, forests of Zaonezhye Peninsula can be roughly divided into three classes: (A) high-quality primeval forests with negligible human impact, (B) forests with high conservation potential, which are no longer utilized and which are rapidly developing natural values and (C) successional, mostly deciduous, forests growing on abandoned fields or forests pastures. These forests retain important natural values as well due to a large amount of living and dead deciduous trees, as well as the natural succession that has occurred here for dozens of years. Examples of structure, tree volume and species composition in the three classes of forests are given in Tables 1–3 and in Figures 2–5. However, we would like to emphasize that although we made an effort to select representative examples, there is considerable variation in forest structures and composition within these broad classes, which is not fully reflected in these examples.

Fig. 1. Locations of the sample plots in Table 1.
The first group (class A) is high-quality primeval forests. These forests exhibit all the qualities of old, intact natural forests, including diverse tree species composition, big trees and complex stand structure as well as a large amount, diversity and continuity of dead wood. There are very few signs of human influence, if any. Examples of structural features of these forests of the highest conservation priority are given in Table 1 and in Figures 2 and 3. At these sites the amount of dead wood ranged from 94 to 248 m3/ha and living tree volumes from 113 to 539 m3/ha. Not surprisingly, these forests were found from the most remote sites, which were visited; several kilometers from the closest larger settlements.

Table 1. Examples of tree volumes (m3/ha) in three plots of the class A primeval forests. Tree volumes are presented for different tree species as well as living and dead trees separately. Coordinates for the plots are given in parenthesis (latitude/longitude). See Figure 1 for plot locations.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Pinus</th>
<th>Picea</th>
<th>Betula</th>
<th>Populus</th>
<th>Sorbus</th>
<th>Alnus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (62°10'33.11", 35°3'39.88")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>1.4</td>
<td>110.5</td>
<td>-</td>
<td>54.2</td>
<td>-</td>
<td>59.8</td>
<td>225.9</td>
</tr>
<tr>
<td>- Dead</td>
<td>24.7</td>
<td>66.4</td>
<td>7.4</td>
<td>13.1</td>
<td>-</td>
<td>15.7</td>
<td>127.3</td>
</tr>
<tr>
<td>- Total</td>
<td>26.1</td>
<td>176.9</td>
<td>7.4</td>
<td>67.4</td>
<td>-</td>
<td>75.6</td>
<td>353.2</td>
</tr>
</tbody>
</table>

| A2 (62°10'15.85", 35°3'32.15") |
- Living	8.7	103.8	-	-	-	-	112.6
- Dead	-	222.8	24.7	-	-	-	247.5
- Total	8.7	327.6	24.7	-	-	-	360.1

| A3 (62°17'17.93", 35°33'53.45") |
- Living	-	150.5	52.6	335.5	-	-	538.5
- Dead	-	79.7	-	14.0	-	-	93.7
- Total	-	230.2	52.6	349.5	-	-	632.3

Fig. 2. Primeval forest with a significant amount of large aspens in plot A1 (see Table 1) (Photo Timo Kuuluvainen).
The second group (class B) is forests that have been utilized in the past for selective cutting, slash-and-burn cultivation or forest pastures. However, after the cessation of human activities, these forests have developed for dozens of years under natural processes. Therefore, they are rapidly regaining natural structures and they already contain important features of natural forests, such as large trees, layered canopies and a rapidly increasing amount of coarse dead wood. These forests, although still showing signs of past human utilization, can still be considered as forests of high conservation potential. This is the case especially when they are located close to class A forests of the highest conservation priority. Together class A and B forests can form more representative and functional conservation areas. Examples of the composition of forests with high conservation potential are given in Table 2 and in Figure 4. In the study plots, the amount of dead wood ranged from 71 to 193 m3/ha and living tree volumes from 180 to 395 m3/ha. In Finland, these quantities of coarse woody debris has been found sufficient to support very high number of species depended on dead wood (Martikainen et al. 2000, Similä et al. 2003, Penttilä et al. 2004, Junninen et al. 2006).

Table 2. Examples of tree volumes (m3/ha) in three plots of the class B forests with high conservation potential. Tree volumes are presented for different tree species as well as living and dead trees separately. Coordinates for the plots are given in parenthesis (latitude/longitude). See Figure 1 for plot locations.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Pinus</th>
<th>Picea</th>
<th>Betula</th>
<th>Populus</th>
<th>Sorbus</th>
<th>Alnus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 (62° 6’20.58”, 35° 3’19.98”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>57.9</td>
<td>109.3</td>
<td>13.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180.9</td>
</tr>
<tr>
<td>- Dead</td>
<td>25.8</td>
<td>167.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>193.4</td>
</tr>
<tr>
<td>- Total</td>
<td>83.7</td>
<td>277.0</td>
<td>13.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>374.3</td>
</tr>
<tr>
<td>B2 (62° 6’15.45”, 35° 2’11.61”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>10.6</td>
<td>152.9</td>
<td>20.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>184.4</td>
</tr>
<tr>
<td>- Dead</td>
<td>-</td>
<td>80.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80.0</td>
</tr>
<tr>
<td>- Total</td>
<td>10.6</td>
<td>232.8</td>
<td>20.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>264.4</td>
</tr>
<tr>
<td>B2 (62° 15’15.91”, 35° 35’48.08”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>-</td>
<td>259.6</td>
<td>7.5</td>
<td>127.6</td>
<td>-</td>
<td>-</td>
<td>394.7</td>
</tr>
<tr>
<td>- Dead</td>
<td>-</td>
<td>47.1</td>
<td>20.2</td>
<td>2.9</td>
<td>0.8</td>
<td>-</td>
<td>71.0</td>
</tr>
<tr>
<td>- Total</td>
<td>-</td>
<td>306.7</td>
<td>27.7</td>
<td>130.5</td>
<td>0.8</td>
<td>-</td>
<td>465.7</td>
</tr>
</tbody>
</table>
The forests of the third group (class C) are typically located near old, abandoned villages. These forests have been under intensive human influence but are now, after the cessation of human activities, in the early or middle stages of natural forest succession. These are former fields, slash-and-burn sites or pastures near abandoned villages. These forests vary greatly in structure and composition, reflecting different histories of land use as well as the length of time since the area has last been affected by human activities. These successional forests include dense self-thinning alder stands and mixed deciduous stands with alder, birch and (often large) aspen, sometimes spruce in the undergrowth. There are also spruce-dominated stands among the successional forests. These forests provide important habitats for species thriving on living and dead deciduous trees. Examples of the structure and composition of forests with high conservation potential are given in Table 3 and in Figure 5. Even in these secondary forests, the amount of dead wood was relatively high compared to that of intensively managed forests of western Fennoscandia (Fridman & Walheim 2000, Ihalainen & Mäkelä 2009).

Table 3. Examples of tree volumes (m3/ha) in three plots of the class C forests, characterized by intensive human influence in the past. Tree volumes are presented for different tree species as well as living and dead trees separately. Coordinates for the plots are given in parenthesis (latitude/longitude). See Figure 1 for plot locations.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Pinus</th>
<th>Picea</th>
<th>Betula</th>
<th>Populus</th>
<th>Sorbus</th>
<th>Alnus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (62°14'59.28", 35°27'22.18")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>12.1</td>
<td>175.0</td>
<td>82.8</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>258.8</td>
</tr>
<tr>
<td>- Dead</td>
<td>-</td>
<td>42.0</td>
<td>23.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>65.3</td>
</tr>
<tr>
<td>- Total</td>
<td>12.1</td>
<td>217.0</td>
<td>106.1</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>324.1</td>
</tr>
<tr>
<td>C2 (62°14'38.37", 35°29'35.54")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>-</td>
<td>132.4</td>
<td>95.9</td>
<td>78.4</td>
<td>0.3</td>
<td>-</td>
<td>306.9</td>
</tr>
<tr>
<td>- Dead</td>
<td>-</td>
<td>35.6</td>
<td>3.6</td>
<td>94.2</td>
<td>1.2</td>
<td>-</td>
<td>134.7</td>
</tr>
<tr>
<td>- Total</td>
<td>-</td>
<td>168.0</td>
<td>99.5</td>
<td>172.5</td>
<td>1.6</td>
<td>-</td>
<td>441.6</td>
</tr>
<tr>
<td>C3 (62°8'24.90", 34°56'29.94")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Living</td>
<td>101.5</td>
<td>137.4</td>
<td>99.8</td>
<td>20.4</td>
<td>0.3</td>
<td>-</td>
<td>359.6</td>
</tr>
<tr>
<td>- Dead</td>
<td>-</td>
<td>2.6</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
</tr>
<tr>
<td>- Total</td>
<td>101.5</td>
<td>140.0</td>
<td>109.8</td>
<td>20.4</td>
<td>0-3</td>
<td>-</td>
<td>372.2</td>
</tr>
</tbody>
</table>
Overall, we conclude that the past human impact on the current forest structures on the Zaonezhye peninsula can be clearly seen, but also primeval forests of negligible human impact can be found in more remote locations. The cessation of major human influence some dozens of years ago have led to large scale recovery and restoration of natural forest features in many areas. This together with the occurrence of primeval forests of highest conservation priority and culturally modified habitats, opens up promising prospects for designing efficient forest conservation area networks for protection of biodiversity on the Zaonezhye peninsula.

REFERENCES

2.5 Mires of the Zaonezhye Peninsula

Oleg Kuznetsov*, Pavel Tokarev*, Stanislav Kutenkov*, Vladimir Antipin* and Tapio Lindholm**

* Institute of Biology of the Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk.
11 Pushkinskaya St., 185003 Petrozavodsk, Karelia, Russia
** The Finnish Environment Institute (SYKE), P.O.Box 140, 00251 Helsinki, Finland.
Corresponding author: Tapio Lindholm
E-mail: tapio.lindholm@ymparisto.fi

Introduction

Mire ecosystems play an essential role in the boreal zone, both in landscape functioning and in biodiversity conservation. Since the mid-20th century, mires in the southern parts of the Republic of Karelia have been extensively drained for forestry and agriculture. Due to these practices, there has been a need for special research and decision making to protect the diversity of wetland ecosystems in the republic (Antipin & Kuznetsov 1998). Since 1950, the Mire Ecosystems Laboratory of the Institute of Biology of the Karelian Research Centre Russian Academy of Sciences has carried out multidisciplinary studies on wetland vegetation, stratigraphy, dynamics and natural resources, as well as their management and protection in the European North of Russia and adjacent regions (Kuznetsov 2003, Elina & Kuznetsov 2006, Elina et al. 2010). For nearly 30 years, the Mire Ecosystems Laboratory has been studying wetland diversity in eastern Fennoscandia as well as mire conservation issues in collaboration with colleagues from Finland (Heikkilä et al. 1997, 2001, Kuznetsov et al. 2012).

Zaonezhye Peninsula lies between two long bays in the northern part of Lake Onega. Its nature is quite different from other parts of eastern Fennoscandia. First, the vegetation is highly diverse owing to the mineral-rich bedrock and soils. Secondly, the dissected terrain and the small size of mires have spared them from large-scale draining. Even though Zaonezhye has been influenced by human activities already for a millennium, there are still substantial areas of undisturbed nature, which are of high conservation value for the entire Northern Europe. Different types of mires are the best-preserved ecosystems in Zaonezhye. Therefore, special research on mire ecosystems has been carried out within the project “Barents Protected Area Network, BPAN”, resulting in proposals for biodiversity conservation in Zaonezhye.
Study area

Zaonezhye Peninsula features two contrasting landscapes: highly dissected tectonic-denudation ridge landscape in the northwestern and central parts, and glacial lacustrine plain landscape in the eastern and southeastern parts of Zaonezhye. The contrasting landscapes have shaped the patterns of paludification as well as the distribution of mire types in the peninsula. The Mire Ecosystems Laboratory of the Institute of Biology of the Karelian Research Centre RAS has carried out botanical and stratigraphic surveys on some of the mires since 1951. A part of the results have been published (Kozlova 1971, Antipin et al. 1993, 1994, Dyachkova et al. 1993, Kuznetsov & Khokhlova 1994, Elina et al. 1999, Kuznetsov et al. 1999, 2000, 2013, Maksimov 2005). These results have also been used in preparing this paper.

Material and methods

Satellite imagery and in situ surveys revealed 642 undrained mires, covering an area of 15 000 ha. In Zaonezhye, small mires (0.5–10 ha) are widespread, whereas large mires (more than 200 ha) are few. In general, large mires represent mire systems that consist of several massifs, sometimes including different types of mires (Tab. 1, Fig. 1). In the Russian tradition of mire research, a mire massif has been the main object of research. According to this research tradition, individual mires develop in individual depressions. As depressions are filled with peat and expand, individual massifs become connected in mire systems.

Mire massifs are classified based on the composition and structure of plant cover in the central part, as well as the distribution of plant communities along the centre-to-margin gradient of the mire massif (Tsinzerling 1938, Elina et al. 1984, Yurkovskaya 1992). According to Yu.D. Tsinzerling (Tsinzerling 1938), aapa mire massifs also include minerotrophic fens where the central part consists of string-flark or hummock-flack systems. There is a sparse cover of herbs or herbs and mosses on the wet flarks, and peat accumulation has either slowed down or ceased (Kuznetsov 1986, 2003). In this study, peat types were determined according to Russian classification (Tyuremnov 1976), which includes distinctive features for Karelia (Elina et al. 1984). Vegetation dynamics of mires were reconstructed by analysing the botanical composition of peat. Samples were analysed microscopically (with 5% precision) and plant macrofossils were identified (Korotkina 1939). Based on these data, diagrams were plotted to determine paleocommunities, determined by the dominant plant species in each stratum. Computer programme “Korpi” was used to draw these diagrams (Kutenkov 2013a).

Mire types with similar ecological properties, as well as those difficult to identify in satellite images, were grouped together. Thus, type V (Fig. 1) comprises herbaceous mires on lakeshores as well as herbaceous and herb-moss mires in depressions, which have a pronounced herbaceous cover despite not being associated with lakes.

Results and discussion

Mapped mires cover 7.6% of the peninsula. Nearly a half of the mires are minerotrophic, forested mires. The tree stands consist of different species and their canopy closure is 40% or higher. There are also areas of paludified forests (with less than 30-cm-thick peat deposits) that raise the degree of paludification on the peninsula to around 10%.

A large amount of mires in the eastern and southeastern parts of the peninsula have been drained and converted into farmland. Altogether 38 drained mire massifs with a combined area of 3207 ha were identified from cartographic materials (Peatland …
1979) and satellite images (Fig. 2). There has been hardly any drainage for forestry, which has affected no more than 300 ha in the northern part of the peninsula.

In Zaonezhye, mires occupy tectonic and glacial depressions, as well as overgrow bays of Lake Onega and other inland waterbodies. As a result, mires have a NW-SE orientation, which can be clearly seen in Figure 1. The mires of Zaonezhye were formed at different times. In higher parts of the peninsula, where the waters of Lake Onega retreated earlier, mires began forming 8000–9000 BP; whereas in the Lake Onega bays, mire formation occurred 3000–5000 BP (Elina et al. 1999, Kuznetsov et al. 1999). These mires are of both terrestrial and lacustrine origin. In tectonic depression, lacustrine-paludal deposits are often five to seven (or nine) metres, and sapropel deposits one to several meters thick. In one herbaceous mire on the southern shore of Lake Karasozero, there is over eight metres of sapropel, with a metre of quagmire peat on top. There are also mires in depressions, resembling gullies, with four to six metres of peat deposits of terrestrial origin. Examples of peat stratigraphy and formation of massifs are given below. In moraine and lacustrine sediments, as well as in the Lake Onega bays, peat deposits are thinner (between one and three metres).

Table 1. Types of mire massifs on Zaonezhye Peninsula.

<table>
<thead>
<tr>
<th>Type of mire massif</th>
<th>Number</th>
<th>Area, ha (%</th>
<th>Min. and max. area of massif, ha</th>
<th>Min. and max. area of massif, ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ombrotrophic ridge-hollow bogs (raised bogs) (I)</td>
<td>Average area of massif, ha</td>
<td>238</td>
<td>61 – 358</td>
<td></td>
</tr>
<tr>
<td>Ombrotrophic pine-dwarf shrub-cotton-grass-Sphagnum bogs (pine bogs) (II)</td>
<td>Min. and max. area of massif, ha</td>
<td>12</td>
<td>0.5 – 200</td>
<td></td>
</tr>
<tr>
<td>Mesotrophic tree-grass-Sphagnum mires (III)</td>
<td>1730 (12)</td>
<td>14</td>
<td>0.5 – 184</td>
<td></td>
</tr>
<tr>
<td>Mesoeutrophic string-flark aapa mires (IV)</td>
<td>7</td>
<td>326 (2)</td>
<td>82</td>
<td>1 – 168</td>
</tr>
<tr>
<td>Mesoeutrophic and eutrophic herb-moss and herb mires (V)</td>
<td>118</td>
<td>2003 (13)</td>
<td>15</td>
<td>0.5 – 330</td>
</tr>
<tr>
<td>Minerotrophic forested mires (VI)</td>
<td>105</td>
<td>7378 (49)</td>
<td>77</td>
<td>2 – 586</td>
</tr>
<tr>
<td>Undetermined mire type (VII)*</td>
<td>82</td>
<td>367 (3)</td>
<td>4</td>
<td>0.5 – 19</td>
</tr>
<tr>
<td>Total</td>
<td>642</td>
<td>15064 (100)</td>
<td>24</td>
<td>0.5-586</td>
</tr>
</tbody>
</table>

*These include small mires whose plant cover could not be determined.

Zaonezhye Peninsula is characterized by basic and ultrabasic bedrock, whose clasts are found also in Quaternary sediments. As a consequence, groundwater discharge to mires is highly mineralized and minerotrophic mires are widespread (Tab. 1). It has made little sense to drain mires in the ridge landscape due to the topography and the small size of mires. Therefore, nearly all mires on the peninsula remain intact. As a result, the mires of Zaonezhye feature a high diversity at several levels of ecosystem organization.

The mires of Zaonezhye contain around 240 vascular plant species, which is over 70% of the entire mire flora in Karelia (Kuznetsov 2012). There are several regionally red-listed species (Ivanter & Kuznetsov 2007), including *Epipactis palustris*, *Malaxis monophylla* and *Dactylorhiza traunsteineri*, as well as a number of Siberian species at the western limit of their distribution that are relatively rare in Fennoscandia, including *Ligularia sibirica* and *Rubus humulifolius*. The moss flora of the Zaonezhye mires is also relatively comprehensive. There are around 90 species, which account for more than 60% of the moss flora of Karelian mires. Also rare species occur, some of which are at the limit of their range, including *Sphagnum pulchrum*, *S. lindbergii*, *S.
Reports of the Finnish Environment Institute 40 | 2014

Also, the plant communities of Zaonezhye mires are highly diverse. They represent more than a half of known syntaxa of mire vegetation in Karelia (Kuznetsov, 2003, 2012). Especially noteworthy is the wide range of eutrophic communities of herbaceous and herb-moss mires as well as tree-herb-moss mires. These mires are of high conservation value for the whole of Northern Europe. Below we give a short description of plant cover and formation patterns of the main types of mire massifs in Zaonezhye.

Ombrotrophic ridge-hollow Sphagnum bogs occupy 956 ha (6%) and comprise several relatively large mire systems (Yuno, Pivgozerskoe, and Koybozerskoe) in Zaonezhye. Their central parts are characterized by a ridge-hollow or hummock-hollow microtopography (Fig. 3). Dwarf shrub-Sphagnum communities with *Sphagnum fuscum* (sometimes *S. magellanicum*) and the occasional pine grow on the ridges, whereas the hollows are dominated by *Sphagnum balticum* and *Eriophorum vaginatum*, sometimes *Scheuchzeria palustris*. These mires may also have narrow water tracks, occupied by mesotrophic sedge-Sphagnum communities (*Carex rostrata – Sphagnum fallax*). The mire margins are covered by pine-cottongrass-dwarf shrub-Sphagnum communities, which are also habitats of cranberry and cloudberry. Among these mires, of particular conservation value is the Koybozerskoe mire, where moss species rare for Zaonezhye have been found, including *Sphagnum pulchrum*, *S. lindbergii* and *S. aongstroemii* (Kuznetsov et al. 2000).

Ombrotrophic pine-dwarf shrub-cottongrass-Sphagnum bogs occupy ca. 2300 ha (15%) in Zaonezhye. These mires are represented by a large number of small mire massifs, ranging from 0.5 to 10 ha, and only a few mires larger than 100 ha. Their tree stands are sparse (with a canopy closure of 0.2–0.4%) and their tree layers are 4–10 m (sometimes 12–14 m) tall. The ground cover is dominated by *Rubus chamaemorus*, which is a common dwarf shrub on wetlands. Also *Eriophorum vaginatum* is often present. There is a continuous moss cover, comprising *Sphagnum angustifolium*, *S. magellanicum*, *S. russowii*, *S. fuscum*, *S. capillifolium* and *Pleurozium schreberi* in different proportions. There is little variation in microtopography, although dwarf shrubs are more abundant in elevated areas around tree trunks.

These mires are usually relatively shallow (2–3 m thick). In most cases their formation began with minerotrophic stages. A profile of this type of mire is shown in Figure 4. Its formation began with a eutrophic horsetail-Sphagnum community (Borehole 2), which was soon replaced by a cottongrass-Sphagnum mesotrophic community, followed by an ombrotrophic stage. Peat bog deposits in the mire are two metres thick. At the margins (Boreholes 1 and 3) the mire has not gone though a minerotrophic stage.

Aapa mires occupy 326 ha (2%) of the peninsula. These mires are confined to narrow depressions and abundantly fed by groundwater from the mineral banks. They form a part of a number of mire systems, together with other types of mire massifs. Central parts of aapa mires are characterized by string-flark and hummock-flark complexes, with herbaceous or herb-Hypnum flarks. The formation of these complexes in the aapa mires of Zaonezhye began relatively recently. Therefore, the strings are low (10–20 cm) and the herbaceous cover of the flarks is relatively dense. These complexes occupy 20–30% of the area of the massifs. Owing to highly mineralized groundwater and a high flow rate, the vegetation of the complexes is eutrophic or mesoeutrophic. Microtopographic elevations are covered by herb-Sphagnum (*Sphagnum centrale*, *S. warnstorfi*, *S. subfulvum*, *S. teres*) communities. The field layer is dominated by *Carex lasiocarpa* and *Molinia caerulea*, with frequent *Potentilla erecta* and *Trientalis europaea*, as well as *Juniperus communis* and short pines. The flarks host herbaceous and herb-Hypnum (*Warnstorfia exannulata*, *Scorpidium scorpioïdes*) communities, sometimes with

aongstroemii, Hamatocaulis vernicosus and *Loeskyphnum badium* (Boychuk & Kuznetsov 2000, Maksimov & Syrjanen 2014).
Sphagnum subsecundum and S. teres. The field layer consists of sedges (Carex lasiocarpa, C. limosa, C. livida, C. chordorrhiza), Menyanthes trifoliata, Equisetum fluviatile and Utricularia intermedia. Most of the area in aapa mires is occupied by herb-moss eutrophic and mesoeutrophic communities, and there is little variation in microtopography. The rims of aapa mires are covered by mesotrophic tree-herb-Sphagnum communities. Due to this feature, aapa mires in Zaonezhye are similar to herb-moss mires, which makes identifying these two types in satellite images and *in-situ* surveys problematic.

Kalegubskoe mire massif (№ 15, Fig. 1) illustrates the formation of aapa mires. It covers 168 ha in a deep and narrow tectonic depression, which is over 5 km long, and its waters discharge to Lake Onega. The peat deposits of Kalegubskoe mire are 5.5 metres thick (Fig. 5, 6). Its formation began with eutrophic birch-reed communities (stage I, Fig. 6). These communities persisted for several millennia, during which the mire underwent changes in herb and moss cover composition (stages II, III). As a result, there are four metres of woody and woody-herbaceous fen peat deposits on Kalegubskoe mire. The central part of the mire is covered by 1.5 metres of sedge fen peat deposits from sedge-moss communities (stage IV). This is a typical situation for aapa mires, which have been developing since the early sub-Atlantic period (ca. 2500 BP) (Kuznetsov, 1986). A cooling climate and increased moisture were the driving forces in the formation of these mires, causing a rise in water level and water retention. In this specific mire, trees have been replaced by wet herb-moss aapa complexes.

Eutrophic and mesoeutrophic herb-moss mires develop in basins with an ample groundwater feed, sometimes from springs. These and mires on lakeshores together make up 13% of all the mires on the peninsula. Herb-moss mires feature a relatively diverse plant cover. The field layer consists of various sedge species with several wetland herbs. The moss cover is composed of both Sphagna (Sphagnum obtusum, S. subsecundum, S. teres, S. centrale), and Bryidae (Warnstorfia exannulata, Hamatocaulis vernicosus, Cynclidium stygium, Campylium stellatum, Paludella squarrosa, Scorpidium scorpioides, Tomentypnum nitens). The microtopography of the mires is indistinct, and the peat accumulation rate is high. There are only a few woody plants. Among them, Picea x fennica with drooping tops usually grow around hummocks, associated with groundwater springs. The flora of these mires comprises a number of rare and calciphile species, including Epipactis palustris, Malaxis monophyllos, Bistorta major, Rumex fontanopapulosus, Ligularia sibirica and Dactylorhiza traunsteineri.

Dlinnoe mire (№ 7, Fig. 1) is a system of several herb-moss mire massifs, formed in narrow tectonic depressions. It consists of small ombrotrophic dwarf shrub-Sphagnum mires that are not flooded by groundwater. At the centre of one of the mire massifs is Lake Cheolozero. A stratigraphic profile has been established 100 metres south of the lake (Fig. 7). In this part, the depth of the mire is up to 6.5 metres. The lower strata of the deposit are made up of woody and woody-reed fen peat, suggesting that the mire developed from birch-reed communities on land. (Fig. 8, stage I). In this part of the mire, the lake has fluctuated and its waters have spilled (as the lake has expanded) onto the mire surface more than once over the history of the mire. As a result, there are 0.5–1.5 m thick water lenses in the peat deposit (Fig. 7, boreholes 4, 5; Fig. 8, stages II, V). The analysis of plant succession from borehole 4 (Fig. 8) revealed a 75 cm water lens (II), suggesting that soon after 0.5 m of woody-reed peat was deposited, the mire was flooded again (stage 1). Subsequently, a eutrophic reed-Sphagnum community (III) was formed, soon replaced by a meso-oligotrophic cottongrass-Sphagnum community (IV) with Sphagnum angustifolium. This succession means that there was no longer groundwater supply to the central part of the mire. Another two-metres-thick water lens (V) indicates yet another flooding of the site. Eventually, the waterbed was covered with a floating mat, consisting of a mesotrophic Scheuchzeria-Sphagnum community with Sphagnum obtusum (VI), followed by a me-
so-oligotrophic cottongrass-\textit{Sphagnum} community (VII) with \textit{Sphagnum magellanicum}.

In the deposit, the transition to an ombrotrophic stage (VIII) with \textit{Sphagnum fuscum} is visible at the depth of one metre. This small (ca. 30 m wide) dwarf shrub-cottongrass-\textit{Sphagnum} community in the centre of the mire has no influx of groundwater. It is surrounded on all sides by eutrophic herb-moss communities. The vegetation dynamics of a sedge-\textit{Sphagnum} community (borehole 3 in Fig. 7) are shown in Fig. 9. Also this part of the mire began with a tree-reed community (stage I), which was replaced by reed-\textit{Sphagnum} communities (stages II, III). These communities persisted several millennia, resulting in 3.5-metre deposits of herb-\textit{Sphagnum} fen peat. In the top 25 cm of the peat deposit, there is evidence of a recent rise in water content and reduction in flow rate, which have driven plant succession at the site (stage IV). As a result, the hydrophilous \textit{Sphagnum subsecundum} has increased, whereas reeds have nearly disappeared.

On lakeshores, communities of herbaceous mires dominated by \textit{Carex elata} spp. \textit{omskiana}, \textit{C. diandra}, \textit{C. cespitosa}, \textit{C. vesicaria}, \textit{Phragmites australis}, \textit{Equisetum palustre}, \textit{Comarum palustre} and \textit{Menyanthes trifoliata} are widespread (Fig. 10). These communities consist of over 100 vascular plant species, including a number of semi-aquatic plants that are not found in any other types of mires. Depending on the duration of spring and summer floods, the moss cover is either poor or completely missing in these mires. Their relatively shallow (1–2 m) peat deposits consist of herbaceous peat with high ash content (Kuznetsov et al. 2000).

\textbf{Mesotrophic tree-grass-\textit{Sphagnum} mires} cover 1730 ha (12\%) in Zaonezhye. These small mire massifs occupy depressions of different genesis. Their tree layer consists of pine and birch stands that are between 3–4 and 6–8 metres high, with a canopy closure of 0.2–0.3. The field layer is made up of sedges, wetland herb species and occasionally reeds. In addition, hummocks around tree trunks are often covered with wetland dwarf shrubs. There is also a continuous moss cover, dominated by \textit{Sphagnum angustifolium}, with \textit{Sphagnum centrale}, \textit{S. russowii}, \textit{S. magellanicum} and \textit{S. teres}.

\textbf{Forested mires} account for half of the total area of mires in Zaonezhye. Forested mires occur on moraine plains as well as in depressions in the ridge terrain. These mire massifs range in size from two to several hundred hectares, and nearly all of them are minerotrophic. The mires are of different genesis and their lacustrine-paludal deposits range from 0.5–1 to 5.5 metres in depth. Forested mires have a highly diverse plant cover, consisting of a wide range of tree-grass and tree-grass-moss communities. The tree stands are between 10–12 to 20–22 metres tall and their canopy closure is 0.4–0.7\%. There are single-species as well as mixed stands of pine, spruce, downy birch and black alder on these mires (Kutenkov 2013 b). Forested mire communities either form separate mire massifs, or occur at the margins of other mires. Eutrophic spruce, birch and black alder stands are widespread. Their herbaceous field layer is dominated by \textit{Filipendula ulmaria}, sometimes \textit{Phragmitites australis}, sedges (\textit{Carex cespitosa}, \textit{C. vesicaria}, \textit{C. rostrata}) and \textit{Calla palustris}. The microtopography of these mires is characterized by wet microdepressions and high hummocks around tree trunks. Due to the high diversity of microhabitats, there is also a high diversity of plant communities: Up to 57 vascular plant species and 20 moss species have been found from one site. In forested mires, the moss cover is discontinuous and consists of a number of eutrophic species, including \textit{Sphagnum warnstorffii}, \textit{S. squarrosum}, \textit{S. teres}, \textit{S. centrale}, \textit{Tomentypnum nitens}, \textit{Campylium stellatum}, \textit{Scorpidium revolvens}, \textit{Calliergon cordifolium}, \textit{Pseudobryum cinctoides}, \textit{Plagiomnium ellipticum} and \textit{Calliergonella cuspidata}. \textit{Sphagnum angustifolium}, \textit{S. russowii} and other forest bryophytes grow on the hummocks around tree trunks, together with dwarf shrub and herb species, associated with forests. Of special interest are eutrophic herb-\textit{Sphagnum} pine mires, where \textit{Molinia caerulea} dominates the field layer. These mires are associated with carbonaceous bedrock and
contain a number of calciphile species. Their moss layer is dominated by *Sphagnum warnstorfii*, although other eutrophic species are also present.

In Zaonezhye, mesotrophic grass-*Sphagnum* pine mires as well as bilberry-*Sphagnum* and horsetail-*Sphagnum* spruce mires are rare and small. Also ombrotrophic dwarf shrub-Sphagnum pine mires are rare. Overall, the flora of forested mires in Zaonezhye consists of 155 vascular plant species and 68 moss species. Due to their species diversity, the mires of Zaonezhye are of high conservation value (Kutenkov 2013 b).

Mires conservation in Zaonezhye

The Kizhy federal nature reserve was established to protect the diverse ecosystems of the skerries in the southeastern part of Zaonezhye. There are also herbaceous mires on the lakeshores within the boundaries of the reserve. In addition, seven regional mire nature monuments have been established on Zaonezhye Peninsula (Tab. 2, Fig. 1). Also a number of other, both representative and unique, mires merit a conservation status (Tab. 2; Fig. 1). A feasibility study that has been carried out for the Zaonezhye landscape reserve and is under discussion at the Ministry of Nature Use and Environment of the Republic of Karelia (Gromtsev 2013). If the landscape reserve is established, all these mires will be protected and the biodiversity of mire ecosystems in Zaonezhye will be conserved.

REFERENCES

Table 2. Protected and nominated mires.

<table>
<thead>
<tr>
<th>№ in Fig. 1</th>
<th>Name</th>
<th>Area, ha</th>
<th>Type of mire massif</th>
<th>Conservation status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pigma</td>
<td>365</td>
<td>Mire system of M* tree-grass-Sphagnum and ME herb mire massifs</td>
<td>NM****</td>
</tr>
<tr>
<td>2</td>
<td>Lan'</td>
<td>30</td>
<td>M tree-grass-Sphagnum</td>
<td>RC*****</td>
</tr>
<tr>
<td>3</td>
<td>Maloe Unitskoe</td>
<td>31</td>
<td>M tree-grass-Sphagnum</td>
<td>RC</td>
</tr>
<tr>
<td>4</td>
<td>Mire near Nizhnee Pigmosero Lake</td>
<td>101</td>
<td>O** pine bog</td>
<td>RC</td>
</tr>
<tr>
<td>5</td>
<td>Yuno near village Mikheeva Selga</td>
<td>249</td>
<td>O raised bog</td>
<td>RC</td>
</tr>
<tr>
<td>6</td>
<td>Syarg</td>
<td>118</td>
<td>M tree-grass-Sphagnum</td>
<td>RC</td>
</tr>
<tr>
<td>7</td>
<td>Dlinnoe</td>
<td>330</td>
<td>Mire system of ME herb-moss mire massifs</td>
<td>RC</td>
</tr>
<tr>
<td>8</td>
<td>Lovosinskoe</td>
<td>26</td>
<td>O pine bog</td>
<td>RC</td>
</tr>
<tr>
<td>9</td>
<td>near Nizhnee Munosero Lake</td>
<td>75</td>
<td>ME*** herb mire</td>
<td>RC</td>
</tr>
<tr>
<td>10</td>
<td>Munosierskoe</td>
<td>28</td>
<td>ME herb mire</td>
<td>RC</td>
</tr>
<tr>
<td>11</td>
<td>Cherkosierskoe</td>
<td>23</td>
<td>O pine bog</td>
<td>RC</td>
</tr>
<tr>
<td>12</td>
<td>Koibosierskoe</td>
<td>331</td>
<td>Mire system of O raised bog and M tree-grass-Sphagnum massifs</td>
<td>RC</td>
</tr>
<tr>
<td>13</td>
<td>Troinoe 3</td>
<td>46</td>
<td>ME aapa mire</td>
<td>RC</td>
</tr>
<tr>
<td>14</td>
<td>Troinoe 6</td>
<td>64</td>
<td>O raised bog</td>
<td>RC</td>
</tr>
<tr>
<td>15</td>
<td>Kalezubskoe</td>
<td>168</td>
<td>Mire system of ME aapa mire and ME herb-moss mire massifs</td>
<td>NM</td>
</tr>
<tr>
<td>16</td>
<td>near Lake Lelikosero</td>
<td>200</td>
<td>O pine bog</td>
<td>NM</td>
</tr>
<tr>
<td>17</td>
<td>along Lel'rechka River</td>
<td>95</td>
<td>M tree-grass-Sphagnum</td>
<td>NM</td>
</tr>
<tr>
<td>18</td>
<td>near Lake Kosmosero</td>
<td>10.6</td>
<td>ME aapa mire</td>
<td>RC</td>
</tr>
<tr>
<td>19</td>
<td>Zamoshye</td>
<td>178</td>
<td>ME herb mire</td>
<td>NM</td>
</tr>
<tr>
<td>20</td>
<td>near Petrikovo Bay</td>
<td>43</td>
<td>ME herb mire</td>
<td>NM</td>
</tr>
<tr>
<td>21</td>
<td>Near village Bojarschina</td>
<td>24</td>
<td>ME herb mire</td>
<td>NM</td>
</tr>
<tr>
<td>22</td>
<td>Kosmoserskoe</td>
<td>379</td>
<td>ME forested mire</td>
<td>RC</td>
</tr>
</tbody>
</table>

* M –mesotrophic, **O –ombrotrophic, ***ME – mesoeutrophic, ****NM - nature monument,
***** RC –recommended for conservation
Fig. 1. Undisturbed mires in Zaonezhye.

Fig. 2. Mires drained for agriculture in Zaonezhye.
1 - eutropic, 2 - mesotrophic, 3 - ombrotrophic
Fig. 3. Central part of an ombrotrophic ridge-hollow bog. (Photo Pavel Tokarev).

Fig. 4. Stratigraphic profile of the pine-dwarf shrub-Sphagnum mire.
Abbreviations: peat types: eutrophic (1-2): 1- *Equisetum*-Sphagnum, 2- Sphagnum, mesotrophic (3-4): 3- cottongrass-Sphagnum, 4- Sphagnum, ombrotrophic (5-9): 5- pine- cottongrass, 6- cottongrass- Sphagnum, 7- cottongrass, 8- magellanicum, 9- angustifolium; 10- degree of decomposition (%), 11- borehole number, 12- till, 13- clay
Fig. 5. Stratigraphic profile of the Kalegubskoe aapa mire.

Abbreviations: peat types (1-7): fen types: 1- woody, 2- woody-reed, 3- woody-Menyanthes, 4- sedge, 5- Hypnum-reed, 6- sedge-Menyanthes, 7- Menyanthes-Sphagnum; 8- degree of decomposition (%), 9- borehole number, 10- till, 11- clay.

Fig. 6. Plant succession in the central part of the Kalegubskoe mire (borehole 5).

Fig. 7. Stratigraphic profile of the Dlinnoe mire.

Fig. 8. Plant succession in the central part of the Dlinnoe mire (borehole 4).

Fig. 9. Plant succession in the eutrophic part of the Dlinnoe mire (borehole 3).

Palaeocommunity (stage): I – *Betula* + *Pinus* – *Phragmites*, II – *Phragmites* + *Equisetum* + *Menyanthes* – *Sphagnum centrale* + *S. teres*, III - *Phragmites* + *Carex lasiocarpa* – *Sphagnum teres* + *S. warnstorfi*ii, IV – *Carex lasiocarpa* + *Trichophorum* – *Sphagnum sect. Subsecunda*.
Fig. 10. Mesoeutrophic herbaceous mire (Photo: V.L. Mironov).
2.6 Meadows in Zaonezhye

Sergey Znamenskiy

Institute of Biology, Karelian Research Center of Russian Academy of Sciences.
11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
E-mail: seznam@krc.karelia.ru

Introduction

Zaonezhye Peninsula, or Zaonezhye, is one of the most important grassland areas in Karelia. The total area of seminatural grasslands in Zaonezhye is estimated at 70 km2 (excluding abandoned, reclaimed fields), or approximately 3.5% of the total area. This amount of seminatural grassland is approximately nine times more than the average for Karelia (0.39% by 2012). 90% of the grasslands are located in the eastern lowlands of Zaonezhye that historically have been more suitable for agriculture and, therefore, human settlements. However, since the middle of the 20th century even this part of the region has not been able to meet the needs of modern intensive agriculture. People have moved out of villages, livestock has been drastically decreased and arable land has been abandoned. The decrease in cattle farming has caused a decline in hay meadows and pastureland. As a result, local grasslands have been reforested. At the same time grassland area has slightly increased due to the growth of grassland vegetation on abandoned fields. These processes became even more drastic during the 1990s economic crisis. Large cattle farms almost disappeared, while small private farms became increasingly unprofitable due to cheap dairy and meat products, imported from other regions. Nowadays extensive meadow landscapes can be found in the vicinity of the Tolvuya village (over 1000 hectares in total), in the Kizhi archipelago (ca. 1000 ha) and near the Kuzaranda village (ca. 800 hectares). Large grassland areas (over 100 ha) are located also close to settlements, including Lambasruchey, Velikaya Guba, Putka and Padmozero.
History of the study of the Zaonezhye’ grasslands

The grasslands of Zaonezhye are probably the best studied in the Republic of Karelia. In the middle of the 20th century, Marianna Ramenskaya conducted research in the former Zaonezhye municipality. Discoveries made by her group are included in the monograph ‘Meadow vegetation of Karelia’ (Ramenskaya, 1958). This publication is still considered the basic work on Karelian grasslands. Biogeographically, the grasslands of Zaonezhye are a part of the Zaonezhye subprovince of the Southeastern grassland province. The subprovince also includes western parts of Medvezhegorsk and eastern parts of Kondopoga municipalities. On the whole, Zaonezhye is one of the most favorable areas for agriculture and also meadow vegetation in Karelia. First, the geological diversity of the region, especially its carbon-rich shungite mineraloids, provides dark and fertile soils. These soils maintain a better thermal regime during the long, light subpolar summer months. Secondly, the warm and humid climate of Zaonezhye is favorable for agriculture. The mean annual temperature is even higher here than in northern Ladoga. As a consequence, Zaonezhye has become one of the most important agricultural centres in the Russian North.

As a result of traditional agricultural practices, grassland vegetation is well developed in Zaonezhye. In her monograph, Marianne Ramenskaya describes the rich vegetation of uncultivated areas in Zaonezhye as follows: “There is indeed a rich vegetation on the dark-coloured, gravel-rich uncultivated soils of Zaonezhye. Uncultivated land is exceptionally abundant, as stony soils are being abandoned due to difficulties in their mechanical treatment.” (p. 55). Unfortunately, the chapter on uncultivated land does not include information about its vegetation structure. Ramenskaya described in general terms six groups of grassland vegetation from dry to mesic meadows, three of which were found in Zaonezhye.

In the 1980s and 1990s, Valentina Yudina studied meadows in Zaonezhye and later published the results on meadow vegetation on the islands of Kizhi and Volkostrov (Yudina 1999) as well as on mainland Kizhi (Yudina 2000). Yudina divided seven or eight associations of mesic grassland vegetation using the dominant approach. Syntaxa were named after their dominant vegetation type, e.g. “herb-rich” or “leguminous herb-rich”.

During the late 1990s and early 2000s, Sergey Znamenskiy carried out field studies on the Kizhi archipelago as well as in the vicinity of Tolvuya and Kuzaranda. As a result of these studies, Znamenskiy described five vegetation associations based on ecology and topography. Different vegetation associations have different soil features, including soil nitrogen level and grain size. Each association is characterized by an ecologically uniform group of indicator species occurring in certain environmental conditions. In 2012 Znamenskiy also studied meadows of the western selkä area of Zaonezhye. Consequently, the classification of grasslands in southern boreal Karelia now consists of four associations of dry and mesic meadows.

Nitrophilous tall-weed associations of *Antriscetum sylvestris* (Fig. 1) are one of the most widely distributed grassland associations in Zaonezhye. These associations occupy a large part of abandoned fields and hay meadows where the cessation of agriculture has resulted in the accumulation of dead litter, combined with the eutrophication of soils. A very low species density (on average 12-14 species/m²) and a large amount of nitrophilous species characterize these communities. Indicator species include *Anthriscus sylvestris* (L.) Hoffm., *Artemisia vulgaris* L., *Heracleum sibiricum* L., *Dactylis glomerata* L., *Elymus repens* (L.) Gould and *Urtica dioica* L., which are also dominant species in these communities. Depending on the history of the grassland vegetation, species from other ecological groups also occur as subdominant or satellite species. Also Siberian Hogweed (*Heracleum sibiricum*) is characteristic of
the *Antriscetum* communities in Zaonezhye. However, Siberian Hogweed is mainly found in the eastern parts of the region, while *Anthriscus sylvestris* is more common in the western parts of Zaonezhye, as well as in southern boreal Karelia in general.

As mentioned previously, the biodiversity of the *Antriscetum* communities is very low. However, their species pool can consist of up to 60-70 species of vascular plants. Therefore, *Antriscetum* communities can be turned into normal grassland with a few years of habitat management.

In the mesic meadows of Zaonezhye, Brown Knapweed (*Centaurea jacea* L.) is common, whereas Wig Knapweed (*C. phrygia* L.) is relatively rare, unlike in the rest of southern boreal Karelia. Also a third knapweed species, Greater Knapweed (*C. scabiosa* L.), occurs more frequently here than in neighbouring parts of Karelia.

Tall grass association Magnograminetum (Fig. 2, 2a) occurs mainly on moderately humid clay soils on lacustrine plains and flat-topped eskers. This association is particularly common on the eastern plains of Zaonezhye. Indicator species include *Carex ovalis* Gooden., *Cerastium fontanum* Baun., *Festuca pratensis* Huds., *Leontodon autumnalis* L. and *Ranunculus repens* L. Wood Cudweed (*Gnaphalium sylvaticum* L.) is practically absent here, unlike in the Magnograminetum grasslands of the Olonets and Pryazha municipalities. Nitrophilous species, characteristic of *Antriscetum sylvestris* associations (particularly *Anthriscus sylvestris* and *Dactylis glomerata*), can form a large part of the community. Sometimes these species can even become subdominant.

One ecological variation of the *Magnograminetum* association is the tall grass vegetation of lacustrine clay deposits, with codominant Tussock grass (*Deschampsia caespitosa* (L.) Beauv.). In this variation, characteristic species are generally the same but the species density is lower than in the *Magnograminetum* association (13-14 in comparison with 19-20 species/m²).

Another association of mesic meadows in Zaonezhie is more rare but much more biologically diverse: **Forb-rich association Varioherbetum** (Fig. 3) occurs on sandy soils on fluvioglacial deposits and moraines. These associations grow on stony soils on steep slopes where mechanical soil treatment is difficult. Therefore, these sites have been soon abandoned and their vegetation has become rare. At present forb-rich meadows can only be found on small pastures near old villages. Nowadays there is almost no permanent population in smaller villages and, thus, no livestock. As a result, meadows are declining drastically as they turn into forests or nitrophilous tall-weed vegetation. Characteristic species for this association include *Campanula glomerata* L., *Carum carvi* L., *Dianthus deltoides* L., *Festuca rubra* L., *Fragaria vesca* L., *Knautia arvensis* (L.) Coult., *Pimpinella saxifraga* L., *Plantago lanceolata* L. and *Plantago media* L. Even though Rough Hawkbit (*Leontodon hispidus* L.) is a common indicator species of the *Varioherbetum* association in southern boreal Karelia, it is absent in Zaonezhye. However, Spotted Cat’s-ear (*Hypochoeris maculata* L.) is relatively common. There is also a wide range of satellite species in the association, including a number of meadow and forest plant species. This association is of crucial importance to grassland biodiversity in Zaonezhye. The species pool of *Varioherbetum* communities can include up to 70-80 species of vascular plants. (There are 100-130 species within a single community in some *Varioherbetum* sites of southern Karelia.) The average species density is ca. 18-22 species/m².

A relatively rare association *Deschampsietum flexuosae*, or rocky meadows (Fig. 4), represents dry grasslands. These associations occur on shallow soils that cover neutral or slightly acidic bedrock outcrops. These meadows have a relatively high
species diversity (17-20 species/m² and 70-80 vascular plants in the species pool). In addition to Wavy Hair-grass (*Deschampsia flexuosa* (L. Trin.), characteristic species include plants of rocky vegetation and boreal forests, such as *Antennaria dioica* (L.) Gaertn., *Festuca ovina* L., *Luzula multiflora* L., *Rumex acetosella* L., *Vaccinium vitis-idaea* L., *Vaccinium myrtillus* L. and *Veronica officinalis* L. Another important species is Mat-grass (*Nardus stricta* L.), which used to be a common species in Karelia half a century ago but is now becoming increasingly rare. Currently it occurs as a subdominant species in *Deschampsietum flexuosae* meadows only. Rare species such as orchids can grow on more or less basic rocks (e.g. dolomites).

Future of grasslands in Zaonezhye

The grasslands of Zaonezhye are declining rapidly. Between 1946 and 2000 grassland area in Karelia decreased 3-4 times (Znamenskiy 2000) and it continues to decrease now. Moreover, grasslands are becoming less diverse. Unmanaged meadows are turning into species-poor tall-weed communities that nowadays occupy more than 80% of the grassland area. One of the most endangered meadow associations is the forb-rich association, which is the main source of floristic diversity in Zaonezhye. Also rocky meadows also important, although these meadows are less endangered due to periodic droughts. The droughts regulate the regrowth of trees, which makes grassland vegetation more sustainable. However, even these communities need cattle grazing and mowing, which have nearly ceased as local villages have been converted into summer cottage communities. Nowadays traditional agriculture has concentrated on the outskirts of large villages, such as Velikaya Guba, Tolvuya or Kuzaranda, while the rest of the area is characterized by irregular land use.

Unfortunately the future of grasslands in Zaonezhye does not look good. Even the development of protected areas does not help grasslands since meadow protection requires regular traditional agricultural activities. At present, agricultural activities are not allowed in the management plans of protected areas and even if they were, it would be difficult to arrange grazing and mowing there in practice. At the moment, the only opportunities for meadow protection exist on Kizhi Island where mowing is carried out regularly within the territory of the Kizhi open-air museum. However, local population should be encouraged to practice part-time small-scale farming part. In addition, regulations on small pastures and hay meadows within protected areas should be simplified in order to protect at least some of the grassland biodiversity in Zaonezhye. Restoration of forest and tall-weed communities into meadows has not been studied enough and could be problematic.

REFERENCES

Fig. 1. Nitrofilous tall-weed associations of Anthriscetum sylvestris (Photo Sergey Znamenskiy).

Fig. 2. Tall grass association Magnograninetum (Photo Sergey Znamenskiy).
Fig. 3. Forb-rich association *Varioherbetum* (Photo Sergey Znamenskiy).

Fig. 4. Deschampsietum *flexuosoae* association, (rocky meadow) (Photo Sergey Znamenskiy).
3 Flora and fauna in Zaonezhye Peninsula area

3.1 Vascular plant flora of Zaonezhye Peninsula

Alexei V. Kravchenko*, Pertti Uotila**, Mikko Piirainen** and Alexander N. Sennikov**

*Forest Research Institute of the Karelian Research Center of the Russian Academy of Sciences, Petrozavodsk, 11 Pushkinskaya St., RU-185910 Petrozavodsk, Karelia, Russia
** Botany Unit, Finnish Museum of Natural History, P.O.Box 7, FI-00014 University of Helsinki, Finland.

Introduction

Zaonezhye Peninsula is located in the Zaonezhye floristic district of Karelia (Ramenetskaya 1960, 1983) as well as in the biogeographic province of Karelia onegensis (Kon), according to the biogeographic division of the Grand Duchy of Finland and adjacent Russia, developed by 19th century Finnish botanists and zoologists. Earlier the whole Karelia east of the Grand Duchy had been treated as a single region called Russian Karelia or Karelia rossica (Nylander & Saelan 1859). Karelia onegensis was delineated on the map for the first time in the first volume of Conspectus Florae Fennicae (Hjelt 1888) and the second edition of Herbarium Musei Fennici (Saelan et al. 1889). Since then its boundaries have been relatively stable compared to the boundaries of other provinces where there have been sometimes considerable changes (for Kola Peninsula, see Uotila 2013). The system of biogeographic provinces of East Fennoscandia has been regularly used in both publications and herbarium labels by northern European naturalists from the late 19th century up to the present day.

Finnish botanist and phytogeographer Johan Petter Norrlin was a key person in developing the biogeographic division of East Fennoscandia. In 1870 he studied the vast territory of Zaonezhye (in its broad sense) up to Lake Segozero in the north, Petrozavodsk in the south and the border between the Olonets Province and the Grand Duchy of Finland in the west (i.e. practically the whole catchment area of River Suna). Norrlin provided a lot of information on the flora and vegetation of the territory. As a result, substantial differences between Zaonezhye and neighbouring territories
became evident (Norrlin 1871), which served as the background for recognizing the region as a separate biogeographic province.

On the basis of Norrlin’s inventories and subsequent studies by other Finnish botanists, Marianna L. Ramenskaya (1960, 1983) developed the floristic division of Karelia. The boundaries of her Zaonezhye floristic district coincide to a great extent with the boundaries of Karelia onegensis. Due to the natural border formed by Lake Onega, there is no difference between the eastern boundaries of the biogeographic province and the floristic district. Also the northern and southern boundaries are very similar. However, the western boundaries of Karelia onegensis and Zaonezhye floristic district differ substantially. Ramenskaya did not include the upper and middle parts of the Suna river basin in the Zaonezhye floristic district. These areas belong to the West Karelian Highlands that have a rather week relation to Zaonezhye (in both its broad and narrow sense). According to the division of Karelian nature, developed by
Afanasiy I. Marchenko (1956), the western boundary of the Zaonezhye nature district is even further east, roughly along the 64° E longitude.

History of floristic studies on the peninsula

The nineteenth century

Alexander K. Günther, who was a pharmacist at the Aleksandrovsk iron factory and later became the chief state forester of Olonets Province, carried out the first studies in Zaonezhye Peninsula in 1863. There is a large amount of data collected, relating to the northernmost part of Zaonezhye as well as Kizhi and Klimentyiskiy islands. Günther (1867, 1880) published his observations of the flora of Obonezhie (i.e. the area around Lake Onega, including Zaonezhye in its broad sense). The few herbarium specimens he collected are deposited partly in the herbarium of St. Petersburg University (LECB), partly in the Botanical Museum of the University of Helsinki (H). In the same year 1863, the area was studied by two Finnish botanists, lecturer August Kullhem and student Theodor Simming (Norrlin 1871). They collected a lot of herbarium specimens, including some very rare species that have not been discovered since. Unfortunately, Kullhem and Simming did not publish their results. Their collections are located in H.

J. P. Norrlin studied Zaonezhye for the whole summer of 1870. He made a few journeys together with Günther who called him «...my dear fellow researcher of the area» (Günther 1880: 11). Norrlin’s results, together with the data collected by Günther, Kullhem and Simming, were presented in general terms in the classic monograph of the flora of *Karelia Onegensis* (Norrlin 1871); the general part of the flora was also his doctoral thesis in botany. It included an annotated list of species of vascular plants and it was the first detailed flora of any region in Karelia. The flora was divided into three areas – western, central and eastern – that were usually indicated in the list of taxa. The eastern area corresponds with Zaonezhye. For rare and phytogeographically or otherwise interesting species also localities were listed and features in variation, ecology and phytogeography were given. However, Norrlin only visited the surroundings of Velikaya Guba, Tolvuya and Shunga villages on the peninsula. Despite its limitations, his work remains the main source on the flora of Zaonezhye for more than hundred years. Norrlin collected a large amount of herbarium specimens, which are deposited in H.

At the end of the 19th century, also other Finnish scientists visited the area. In 1888 Norrlin’s student Alfred Oswald Kihlman (later Kairamo), better known for his expeditions to the Kola Peninsula and his later work in plant ecology, studied the surroundings of Kyappyaselkya, Kuzaranda and Shunga villages during his travel across the peninsula to Petrozavodsk (Virtanen 2014). Kihlman got advice on his excursion from Günther. In 1896 Bertil R. Poppius, a Finnish entomologist, made an entomological excursion to *Karelia onegensis* (see Jakovlev et al. 2014) and collected dozens of herbarium specimens especially from Zaonezhye Peninsula. Kihlman and Poppius visited localities that had been studied before by Norrlin, and collected some very rare species. Their studies can be considered one of the first examples of monitoring flora. Unfortunately, only very little was published (Kihlman 1888, 1890). However, important findings by Kihlman and Poppius as well as previous researchers were published in Hjelt’s *Conspectus* (Hjelt 1888–1926). The specimens collected by Kihlman and Poppius are in H.

In 1898 Aimo Kaarlo Cajander (another student of Norrlin, who later became professor of silviculture and three times Prime Minister of Finland) and Johan Ivar Lindroth (later Liro; who became professor of plant pathology in Helsinki) visited the southeastern corner of the territory, namely Kizhi, Klimentyiskiy (village of Sennaya Guba), Uima and Yuzhnyi Oleniy Islands. They collected large number of specimens,
which are deposited in H. In addition to a brief report on their travel (Cajander & Lindroth 1900), there is a manuscript with a list of sites where observations and collections were made in the Archives of Botanical Museum, Helsinki (Kravchenko et al. 2005; Ahti & Boychuk 2006).

The following century

At the beginning of the 20th century, Saint Petersburg Society of Naturalists initiated a floristic study of Obonezhie. Petrozavodsk was the starting point of the long expedition of Eduard K. Bezays and A. Verdi in 1907 that ended in Povenets. They visited several places in the eastern shores of Zaonezhye Peninsula and the western shores of Unitsa Bay. The results of the excursion were soon published (Bezays 1911); in addition to the flora of each place studied, even environmental conditions such as landscape, relief, soils and features of land use were described in detail. Unfortunately, some published records are unreliable due to erroneous identifications. The rich collections are kept in Komarov Botanical Institute in St. Petersburg (LE).

In 1927 Valentina A. Koroleva studied weeds in South Karelia and visited ca. 30 villages in Zaonezhye Peninsula. In the paper appeared very soon (Koroleva 1927–1928) she listed the main weeds of different crops as well as provided an annotated list of weeds of the entire region, where places in Zaonezhye were mentioned for some rather rare species. Specimens are stored in Herbarium of the N.I. Vavilov Institute of Plant Industry, St. Peterburg (WIR).

The next period of floristic studies in Zaonezhye was during the Second World War. In 1941, on the initiative of the Geographical Society of Finland, the Executive committee on research of natural resources of East Karelia (i.e. Republic of Karelia) was established. Besides other natural resources, the flora and vegetation of the region were subjects of the study (Kravchenko & Uotila 1995). The floristic studies focused mainly on settlements and their surroundings, especially along roads.

Thus, in 1942 the Swedish botanist Benkt Sparre, who served as a volunteer in the Finnish army, studied the flora of Azhepnavolok village and its vicinities (Sparre 1945). He gave exact localities for the most interesting species and collected 160 specimens from the area. In the same year, Aarno Kalela (son of A. K. Cajander and later professor of botany in Helsinki) visited Unitsa village where he collected a small number of herbarium specimens. The specimens collected by Sparre are housed in the Swedish Museum of Natural History, Stockholm (S), with a few duplicates in H, and the specimens collected by Kalela are housed in H.

In 1943 two Finnish botanists, Lars Fagerström (later curator at the Botanical Museum, Helsinki) and Hans Luther (later professor of botany in Helsinki), visited the villages of Shunga, Tolvuya, Velikaya Niva and Velikaya Guba (and areas between the villages, including minor settlements) as well as Bolshoy Klimenskiy Island. Even though they studied the area for only five days, Fagerström and Luther prepared a detailed article on their excursion (Fagerström & Luther 1946), in which the most interesting findings were reported with their exact localities. They also presented an overview of previous inventories of the area. Furthermore, Luther, an aquatic plant botanist, prepared a special publication on the rare Caulinia flexilis (as Najas flexilis; Luther 1945), which was found from Velikaja Guba. Their herbarium collections are in H. During the same summer, Viljo Kujala (later professor of forest biology at the Forest Research Institute, Helsinki) travelled in the area and stayed longer, especially in Velikaya Guba. He collected several specimens and wrote a manuscript of his observations on plants; these specimens and the manuscript are in H.

The next stage of studies in the area refers to the work of M. L. Ramenskaya, who in her time was a key figure in Karelian botany. She prepared the first manual on the
flora of Karelia (Ramenskaya 1960; see also Ramenskaya 1983; Ramenskaya & Andreeva 1982) and she also published a monograph on the meadows in Karelia with an enormous amount of relevés (Ramenskaya 1958). In the period between 17th August and 3rd September 1952, together with her pupil Vera A. Zaykova, Ramenskaya studied the northern part of Zaonezhye; the localities include minor settlements around the villages of Kuzaranda (Al’fimovo, Koshkino and Shirokie Polya), Tolvuya (Adrianovskaya, Belokhino (Belokhinskaya), Voronino (Voroninskaya), Zagor’e, Kar-navolok, Padmozero and Pikalevskaya), Shunga (Bor Pudantsev, Deriguzovo, Enina Gora, Zagorskoe, Karpin Navolok, Krestnaya Gora, Putkozero and Seleznnevo), and also the village of Velikaya Niva. A large number of relevés were studied, and a lot of specimens were collected. According to her notebook (preserved in the archives of the Karelian Research Centre of the Russian Academy of Sciences), they collected 143 (!) specimens in one day (18th August) only. Even though Ramenskaya worked for the Karelian Research Centre, the collected material is now in the herbarium of the Petrozavodsk State University (PZV). In 1964 Ramenskaya’s specimens – altogether more than 20 000 of them (including many duplicates from LE) – were moved from the Karelian Research Centre – from an unequipped and wet room without heating – to the University. Thus, the collection has been rescued (Gnatyuk 1995; Zaykova et al. 1995). Nevertheless, some specimens have been lost (Zaykova et al. 1995).

After Ramenskaya, there was a long break in floristic research in Zaonezhye. Only Eugenia A. Klyukina studied the aquatic flora of few lakes (Valgomozero, Vangozero, Vikshezero, Kosmozero, Padmozero and Putkozero) in 1961 (Klyukina 1965). However, some records are unreliable and the determinations cannot be verified in lack of voucher specimens. In 1979, Nina I. Ronkonen visited the northeastern part of the territory. She collected information mainly about species that are very rare and potentially in need of protection; the obtained data were taken into account when preparing the first Red Data Book of Karelia (Volkov & Lapshin 1985). Ronkonen’s collections are kept in the herbarium of the Karelian Research Centre in Petrozavodsk (PTZ).

Recent decades

Fig. 2. Alexei Kravchenko on dry meadow near Kuzaranda village, July 2004 (Photo Tapio Lindholm).
Floristic research on the islands of the peninsula continued in the 1980s, mainly within the boundaries of the protected area of Kizhskiy Reserve. As a result, lists of vascular plants of Kizhi Island (Shtan’ko & Lantratova 1985, Kravchenko & Sazonov 1992) as well as the other islands of the area (Kuznetsov 1993, 1997) were published. The largest amount of information was collected from Kizhi Island as well as adjacent islands and the mainland shore by Oleg L. Kuznetsov and his student Elena S. Drosdova. Numerous specimens are kept in PTZ. At the time, also the most important nature protection areas, including botanical sites, were designated (Khokhlova & Semina 1988, Antipin et al. 1994, Kuznetsov & Khokhlova 1994, Khokhlova & Kuznetsov 1996, Kravchenko et al. 2000 a, b, Kuznetsov et. al. 2000).

After more than a 30-year break, the study of meadows continued in 1985–1987 (Drozdova 1987). At that time, mires in the vicinities of Lambasruchey and Karasozero villages were studied (Dyachkova et al. 1993, Antipin et. al. 1994). All the results were documented and some specimens were stored in PTZ.

In 1997–2000, a postgraduate student Maksim V. Kashtanov studied the northern part of the peninsula as well as its islands (Kashtanov 1997, 1998 a, b, 1999 a, b). Kashtanov also studied Azhepnovolok village and obtained new data on the flora of the village, studied ca. 60 years earlier by Sparre (Kashtanov 1999 b). Furthermore, he compiled lists of species for 18 islands of the peninsula. Kashtanov collected a great number of specimens, which are kept mainly in PTZ, but also in PZV.

Within the framework of several projects sponsored by the Finnish Ministry of the Environment, including an inventory of biological diversity of Zaonezhye Peninsula, further research in the area was carried out in 1998 and 1999. During this time, Oksana A. Butskikh, Alexander M. Krushen’ and Vera V. Timofeeva visited the vicinities of Kosmozero village, Lakes Kalozero and Chelozero as well as the southern part of Svyatukha Bay of Lake Onega. Collected specimens are kept in PTZ. Within the framework of the last project in 1999, O. L. Kuznetsov and Natalia V. Stoykina studied mires and collected mire plants (Kuznetsov et al. 2000). In addition, Stanislav A. Kutenkov studied paludified forests in 2002 and 2012 (Kutenkov 2006, 2013). The few collected specimens are kept in PTZ.

From 1998 to 2004 Natalia V. Markovskaya studied the distribution and population age structure of orchid species on the islands (Dyachkova & Markovskaya 2003, Markovskaya & Dyachkova 2003, Markovskaya 2004, 2005, Markovskaya et al. 2007). A small number of samples were deposited in PZV.

A Russian-Finnish expedition was arranged to the area in 3rd–6th July 2004. Participants from Russia included Elena P. Gnatyuk, A. V. Kravchenko, A. M. Kryshen’ and O. L. Kuznetsov; and from Finland Tapio Lindholm, Mikko Piirainen, Rauno Ruuhijärvi and Pertti Uotila. They visited several islands: Bolshoi Klimentsky (Klimentsky Nos Cape and Lukovo Cape), Bolshoi Lelikovsky (Radkolye Cape), Megostrov, Paleostrov, Rechnoy, Shunevskiy and Yuzhnyi Oleniy islands, and also the mainland shores in the neighbourhood of Kuzaranda and Tipintsy villages. A relatively large number of specimens were collected; specimens collected by the Russian participants were deposited in PTZ, and those by the Finnish participants in H.

Since 1999 the study of meadows has continued, mainly on Kizhi Island but also on other islands (Yudina 1999, 2000; Znamenskiy 1999, 2000, 2005 a, b, 2010, 2013; Yudina & Stoykina 2005; Timofeeva 2013; Znamenskiy & Timofeeva 2013). As a result, relevés as well as extensive lists of meadow species have been provided. Collections (which are not rich) are in PTZ. In 2009 and 2010, teachers and students of the Petrozavodsk State University studied the shores of Kizhi Island and some other islands (Morozova et al. 2010, 2011); the collected material is kept in PZV.

Vera V. Timofeeva studied the mainland opposite Kizhi Island in 2011 (Timofeeva & Nikolaeva 2012), and Unitsa Bay in 2013. In addition, she carried out inventories of
plants in several lakes (Verkhnee Myagrozero, Gizhozero, Kovshozero, Kondozero, Lelikozero) in 2011–2013. Relatively abundant collections are stored in PTZ.

In 2013, two Russian-Finnish expeditions were arranged as pilot projects in the framework of BPAN project leaded by Finnish Environment Institute. During these expeditions, surroundings of Kaskoselga, Lipovitsy, Oyatevstchina, Polya, Tambitsy, Tipinitzy, Vegeruksa, Velikaya Guba, Uzkaya Salma and Zubovo villages, and Lake Rugozero were visited. The participants of the expedition included botanists, zoologists and ecologists. A number of floristic observations were made mainly by A. V. Kravchenko and Kimmo Syrjänen, although botanical data were collected also by Timo Kuuluvainen, Olli Manninen, Jyri Mikkola, and Olli-Pekka Tikkanen. The collected specimens are deposited mainly in PTZ, but also in the herbarium of the University of Turku (TUR).

During the last two decades rich floristic material, including ca. 2000 herbarium specimens and a great amount of floristic field notes, has been collected from Zaonezhye. However, although many papers have been published, detailed data have been included in only a few of them, mainly dealing with red-listed species (Kravchenko et al. 2000 a) and the flora of the planned Zaonezhye Landscape Reserve (Kravchenko & Timofeeva 2013). Information from Zaonezhye was also taken into account in the preparation of the Red Data Book of Republic of Karelia (Ivanter & Kuznetsov 2007).

![Fig. 3. Pertti Uotila, Elena Gnatyuk and Margarita Boychuk on dry meadow near Kuzaranda village, July 2004 (Photo Tapio Lindholm).](image)
Present knowledge

Despite the long history of botanical studies in Zaonezhye, floristic knowledge of this fairly limited territory is still variable. There is relatively comprehensive data available from the southeastern islands, so called Kizhi Skerries (Kizhi Island and numerous surrounding islands as well as a narrow strip of the mainland), and from the northeastern part of Zaonezhye (Tolvuya – Shunga area), as well as from areas along the main roads. However, less data are available from the northwestern part of Zaonezhye. Nevertheless, it is assumed that indigenous species are relatively well known because very few indigenous species have been found since Norrlin’s studies. However, according to available data, many indigenous species are considered rare. But this is rather an artefact, and their distribution will be clarified in the future.

In total, ca. 530 indigenous species have been discovered from Zaonezhye Peninsula (excluding microspecies of Ranunculus auricomus, R. cassubicus, R. fallax, Hieracium, Pilosella, and Taraxacum). In earlier studies (Norrlin 1871; Fagerström & Luther 1946), a relatively large number of species were considered unique for Zaonezhye (in its broad sense). However, at present only one of them, Polemonium boreale, is only known in Karelia from the area. Other extremely rare species include Caulinia flexilis, which is known in Karelia from only three localities, two of which are in Zaonezhye; and Helianthemum nummularium, which is known from two localities in Karelia, one of which is in Zaonezhye. Many other species are more frequent in Zaonezhye than in any other region of Karelia, namely Ulmus laevis, Myosoton aquaticum, Cotoneaster autumninae, C. melanocarpus, Chaerophyllum aromaticum, Cuscuta europaea, Pseudolysimachion spicatum, Lycopus europaeus, Eupatorium cannabinum, Potamogeton friesii, P. rutilus, Carex muricata. The majority of these species belong to thermophilous species. About 60 species in Zaonezhye have a mainly southern distribution. Many of them grow near the northern limits of their distribution areas. Some, like Carex muricata, Chaerophyllum aromaticum, Odontites vulgaris and Cuscuta europaea, occur here in their northernmost known localities in Russia; while others, like Dracocephalum ruyschiana and Pseudolysimachion spicatum, are in their northernmost localities in Fennoscandia. In Karelia, Zaonezhye provides the northernmost known localities for species, including Stellaria alsine, Ulmus laevis, Corydalis bulbosa, Myosoton aquaticum, Chaerophyllum aromaticum, Cuscuta europaea, Pseudolysimachion spicatum, Glyceria maxima and Scolochloa festucacea.

Fig. 4. Rubus humulifolius (Photo Kimmo Syrjänen).
There is a number of southern species that are not rare in Zaonezhye and often play a significant part in the composition of plant communities. These species include woody plants *Tilia cordata*, *Ulmus glabra*, *Alnus glutinosa*, *Lonicera xylosteum*, *Daphne mezereum* and *Solanum dulcamara* as well as several herbs, like *Polygonatum odoratum*, *Iris pseudacorus*, *Campanula persicifolia*, *Viola mirabilis* and *Chaerophyllum aromaticum*.

There is also a small number of northern species, including *Woodsia alpina*, *Cerastium alpinum*, *Saxifraga nivalis* and *Poa alpina*, occupying outcrops of bedrock, sometimes together with southern species. In addition, *Astragalus subpolaris* and *Oxytropis sordida* have been found from dry pine forests. In Zaonezhye, all northern species are very rare, in contrast to northern Lake Ladoga where a small number of northern species are known from several, sometimes dozens of localities; see, e.g., Heikkilä et al. (1999).

Some eastern («Siberian») species, e.g., *Atragene sibirica*, *Lonicera pallasii*, *Aconitum septentrionale*, *Viola selkirkii*, *Rubus humulifolius*, *Ligularia sibirica* and *Saussurea alpina*, can be found from Zaonezhye close to the western limit of their distribution areas. Without certain features of the region, the number of species with mainly eastern distribution could be higher. First, Lake Onega forms a natural barrier to the east. Secondly, if species have managed to jump over or get around the lake, they cannot move further west because of the rivers running east towards Lake Onega and the watershed blocking them in the west. River basins play an essential role in spreading many species. Good examples include *Atragene sibirica* and *Rubus humulifolius* that are common especially on the shores of water bodies east of Lake Onega.
Fig. 6. *Carex rynchophysa* (Photo Kimmo Syrjänen).

Fig. 7. *Diplazium sibiricum* (Photo Kimmo Syrjänen).

Sandy beaches are sometimes inhabited by a few species typical for seashores, including *Lathyrus aleuticus*, *Calamagrostis meinshausenii*, *Festuca arenaria* and *Leymus arenarius*.

Long-term land use has enriched the flora with alien species; their total number in Zaonezhye is ca. 220 (ca. 30% of the vascular flora). The composition of alien flora
has changed during the course of the past decades. Some weeds, such as *Apera spica-venti* and *Centaurea cyanus*, that were common and abundant decades ago have totally disappeared. At the same time, many newcomers have appeared during recent decades, including aggressive invasive species such as *Heracleum sosnowskyi* and *Impatiens glandulifera*.

In the future, many new species – mainly escapees of ornamental, edible and medicinal plants – are likely to be recorded in the area. Such species have been discovered during the past five years from, for instance, the villages of Lambasruchey, Pod’elniki, Ruch’i, Shunga, Toluyva and Velikaya Guba.

The large numbers of threatened species and their localities, as well as the number of indicators of biologically valuable forests demonstrate the value of Zaonezhye Peninsula for the flora of Karelia. On the basis of several relatively common and widespread indicator species, all the forests on the peninsula could be considered biologically valuable. This means that practically the whole peninsula, which is more or less covered by forests, is biologically valuable.

Table I. The richest plant families in *Karelia onegensis*, in Zaonezhye Peninsula, and in two protected areas inside the Zaonezhye Peninsula: Kizhi Federal Zoological Reserve (Kizhi Skerries), and the planned Zaonezhye Landscape Reserve. Note that the status indigenous/introduced (alien) was revised for the flora in Kravchenko (2007), thus the numbers of indigenous species given in Gnatyuk et al. (2003 b), which is not revised here, can in few families exceed those for the whole Zaonezhye Peninsula.

<table>
<thead>
<tr>
<th>Province / Area</th>
<th>Karelia onegensis</th>
<th>Zaonezhye Peninsula</th>
<th>Kizhi Federal Zoological Reserve</th>
<th>Planned Zaonezhye Landscape Reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>ca. 30 000 km²</td>
<td>ca. 3 000 km²</td>
<td>500 km²</td>
<td>1100 km²</td>
</tr>
<tr>
<td>Family</td>
<td>Number of indigenous species</td>
<td>Ordinal number</td>
<td>Number of indigenous species</td>
<td>Ordinal number</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>69 (10.2)</td>
<td>1</td>
<td>56 (10.4)</td>
<td>1</td>
</tr>
<tr>
<td>Poaceae</td>
<td>60 (8.9)</td>
<td>2</td>
<td>42 (8.0)</td>
<td>2</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>44 (6.5)</td>
<td>3</td>
<td>41 (7.6)</td>
<td>3</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>35 (5.2)</td>
<td>4</td>
<td>24 (4.5)</td>
<td>6</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>29 (4.3)</td>
<td>5</td>
<td>25 (4.6)</td>
<td>4</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>29 (4.3)</td>
<td>5</td>
<td>25 (4.6)</td>
<td>4</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>27 (4.0)</td>
<td>7</td>
<td>24 (4.5)</td>
<td>6</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>27 (4.0)</td>
<td>7</td>
<td>18 (3.3)</td>
<td>8</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>19 (2.8)</td>
<td>9</td>
<td>15 (2.8)</td>
<td>9</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>17 (2.5)</td>
<td>10</td>
<td>7 (1.3)</td>
<td>.</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>15 (2.2)</td>
<td>12</td>
<td>13 (2.4)</td>
<td>.</td>
</tr>
<tr>
<td>Juncaceae</td>
<td>14 (2.1)</td>
<td>.</td>
<td>15 (2.8)</td>
<td>9</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>16 (2.4)</td>
<td>.</td>
<td>11 (2.0)</td>
<td>.</td>
</tr>
<tr>
<td>Total number in the ten richest families (%)</td>
<td>356 (52.8)</td>
<td>287 (53.2)</td>
<td>240 (51.6)</td>
<td>228 (52.5)</td>
</tr>
<tr>
<td>Total number of indigenous species</td>
<td>674</td>
<td>539</td>
<td>465</td>
<td>434</td>
</tr>
</tbody>
</table>

* Gnatyuk et al. (2003 a); ** Gnatyuk et al. (2003 b); *** Kravchenko & Timofeeva (2013). **** As to *Hieracium* and *Pilosella*, all microspecies of each section have been counted as one (collective) species, 4 in *Hieracium* and 4 in *Pilosella.*
List of vascular plant species of Zaonezhye, with annotations for threatened and indicator species

Explanations

The nomenclature mainly follows Kravchenko (2007), and some important synonyms have been given in parentheses.

The red-listed and indicator species as well as aliens have been marked with symbols in front of the species name.

* red-listed species.
** indicator of biologically valuable forests for Northwest Russia (Andersson et al. 2009).
* alien.

Each species is provided by an estimation of frequency (printed in bold italics) in Zaonezhye according to the following scale: rr (very rare), r (rare), str (fairly rare), p (here and there), stfq (fairly frequent), fq (frequent and very frequent).

For red-listed and indicator species, as well as for some other interesting species, the documentation is given by listing localities with herbarium specimens and related publications. A herbarium specimen is indicated by the year of collecting and collector’s surname (in italics). For the herbaria in which the specimens are kept, see the paragraph History of floristic studies. In a few cases the relevant herbarium is mentioned in the list.

Frequencies and localities given by Norrlin (1871) are given within parentheses. An asterisk means that the frequency is given by Norrlin for the whole Karelia onegensis (including Zaonezhye Peninsula), not separately for Zaonezhye Peninsula and Kizhi = Svyatnavolok.

The threat categories according to 3 different sources are given at the end of the relevant species descriptions:

RDB RF = Red Data Book of Russian Federation (Trutnev et al. 2008), the respective IUCN categories given in parenthesis:
1 – находящиеся под угрозой исчезновения [under the risk of extinction] (= critically endangered)
2 – сокращающиеся в численности [number of individuals is declining] (= endangered)
3 – редкие [rare] (this category covers part of IUCN vulnerable + near threatened)

RDB RK = Red Data Book of Republic of Karelia (Ivanter & Kuznetsov 2007), the respective IUCN categories given in parenthesis:
1 – находящиеся под угрозой исчезновения [under the risk of extinction] – 1 (CR, critically endangered),
2 – сокращающиеся в численности [number of individuals is declining] – 2 (EN, endangered)
3 – редкие [rare] – 3 (VU) + 3 (NT) + 3 (LC) (= vulnerable + near threatened + least concern)
4 – с неопределенным статусом [category unknown] – 4 (DD, data deficient)

Note that for the categories given in Red Data Book of Karelia, the erroneous category 3 (LC) is corrected to 3 (NT).
RDB EF = Red Data Book of East Fennoscandia (Kotiranta et al. 1998):

1 – Endangered,
2 – Vulnerable
3 – Rare
4 – Declining
? – Data Deficient

Note. Special attention as source of information must be paid to the maps in Hultén (1971). These are handmade maps, for Karelia mainly completed in Helsinki, where information about specimens, literature and archives were added by pencil to the maps of the first edition of Hultén (1950). At the time, there was no demand for detailed documentation of each dot and the work was done in a short time, using not very detailed maps. As a result, there may be inaccuracies in the locations of the dots, and the maps should be understood more as indicators of general distributions than exact locations of single findings. On the other hand, V. Kujala, one of the persons who commented on the maps and added information especially about Karelia, may have added dots from primary data unknown from other sources, due to his extensive travels in *Karelia onegensis* during the war.

Dubious and erroneously recorded species are given at the end of the list.

Huperzia selago (L.) Bernh. ex Schrank & Mart. – *Str.* (Norrlin 1871: *Stfq.*)

Diphasiastrum complanatum (L.) Holub – *Str.* (Norrlin 1871: *Fq.*)

Lycopodium annotinum L. – *Fq.* (Norrlin 1871: *Fq.*)

Lycopodium clavatum L. – *Stfq.* (Norrlin 1871: *Stfq.*)

Selaginella selaginoides (L.) P. Beauv. ex Schrank & Mart. – *Str.* (Norrlin 1871: *Fq* in NW part.)

Isoëtes echinospora Durieu – *P*, but *fq* in Kizhi Skerries: more than 30 registered localities. (Norrlin 1871: *Shunga, V. Guba, etc.*) – RDB RF: 2, RDB RK: 3 (LC)

Isoëtes lacustris L. – *P*: more than 30 registered localities. (Norrlin 1871: *Stfq.*) – RDB RF: 3, RDB RK: 3 (LC)

Equisetum arvense L. – *Fq.* (Norrlin 1871: *Fq.*)

Equisetum fluviatile L. – *Fq.* (Norrlin 1871: *Fqq.*)

Equisetum hyemale L. – *Str.* (Norrlin 1871: *Str.: Shunga, etc.*)

Equisetum palustre L. – *Fq.* (Norrlin 1871: *Fq–fqq.*)

Equisetum pratense Ehrh. – *Fq.* (Norrlin 1871: *Stfq–fq.*)

Equisetum sylvaticum L. – *Fq.* (Norrlin 1871: *Fq–fqq.*)

Botrychium lunaria (L.) Sw. – *Str.* (Norrlin 1871: *P–stfq.*)

Botrychium multifidum (S. G. Gmel.) Rupr. – *R*: between Prosevskaya and Bol Zarevo villages (Fagerström & Luther 1946); Azhepnavolok (Sparre 1945); Medvedevo (1979 *Ronkonen*); Verkhnee Myagrozero (2012 *Bogdanova PTZ, Timofeeva*). – RDB EF: 3

Ophioglossum vulgatum L. – *R*: Okatovstchina (1952 *Ramenskaya, Zaykova*); between Voroninskoe and Tolvuyskiy Bor villages (1952 *Ramenskaya, obs.*; Tolvuya (Hultén 1971);

Pteridium latiusculum (Desv.) Hieron. ex Fr. (Pteridium pinetorum C. N. Page & R. R. Mill, P. aquilinum L., s. lat.) – *Stfq.* (Norrlin 1871: Fq.)

Dryopteris carthusiana (Vill.) H. P. Fuchs – *Fq.* (Norrlin 1871: Fqq; incl. D. expansa)

Dryopteris crisputa (L.) A. Gray – *R*: ca. 10 current records.

Dryopteris expansa (C. Presl) Fraser-Jenk. & Jenny – *Str*–*Stfq*.

Dryopteris filix-mas (L.) Schott – *Fq.* (Norrlin 1871: Fq.)

Nuphar – *femina* (L.) Roth. – *Fq.* (Norrlin 1871: Fq.)

Cystopteris fragilis (L.) Bernh. – *Stfq.* (Norrlin 1871: Stfq.)

Gymnocarpium dryopteris (L.) Newman – *Fq.* (Norrlin 1871: *Fqq*).

Woodsia ilvensis (Bolton) Gray – *Fq.* (Norrlin 1871: *Fqq*).

Asplenium septentrionale (L.) Hoffm. – *Str*: ca. 16 localities Tolvuya – Klim Nos and between Butenevo and Zaselezhye villages (Fagerström & Luther 1946); Tel’pzero (1952 Fqq). – RDB EF: 4, RDB RK: 3 (LC→NT)

Picea abies subsp. *obovata* (Lede.) Domin – *Str.* (Norrlin 1871: V. Guba.)

Pinus sylvestris L. – *Fq.* (Norrlin 1871: *Fqq*).

Juniperus communis L. – *Fq.* (Norrlin 1871: *Fqq*).

Nuphar lutea (L.) Sibth. & Sm. – *Fq.* (Norrlin 1871: Fq.)

Nuphar pumila (Timm) DC. – *Str*.

Nuphar × spenneriana Gaudin (N. lutea × pumila (Timm) DC.) – *R* (Norrlin 1871: V. Guba.)

Nymphæa borealis Camus (N. alba × candida) – *R*.

Nymphæa candida J. Presl & C. Presl – *Fq.* (Norrlin 1871: Fq in V. Guba, as N. alba L. s. lat.)

Ceratophyllum demersum L. – *Rr*: Putkozero (Shunga) (1952 Ramenskaya & Zaykova; 2012 Kravchenko); Padmozero (Klyukina 1965). (Norrlin 1871: Shunga.)

Actaea erythrocarpa (Fisch.) Kom. – *Str:* Azhepnalvok (1996 Kashtanov); Bukolnikovskiy Isl. (1999 Kashtanov); Kolgostrov (1986 Kuznetsov); Lake Chelozero (1999 Rutkovskaya & Timofeeva); Megostrov Isl. (2004 Kravchenko); Paleostrov Isl. (1999 Kravchenko & Kashtanov); Rechnoy Isl. (2004 Kravchenko); Volkostrov (1996 Kuznetsov). In communities dominated by *Pinus sylvestris*, *Picea abies*, *Alnus incana* and *A. glutinosa*, both in old-growth and middle aged forests (in two localities the measured age of trees was ca. 60 years).

Actaea spicata L. – *Sfq.* (Norrlin 1871: *Sfq.*

Anemonoides nemorosa (L.) Holub (*Anemone nemorosa* L.) – *Str:* mainly in Kizhi Skerries and in up to 5–10 m wide narrow stripe along the shores of Lake Onega. (Norrlin 1871: B. Klim. (Simming, Günther).)

Atragene vulgaris L. – *Rr:* V. Guba (2012 Kravchenko, obs.).

Atragene sibirica (L.) Mill. subsp. *sibirica* (Mill.) Kuntze – *R:* Kuzaranda (no date Günther H; 1896 Poppius); Fomino (1988 Kravchenko; Kravchenko et al. 2000 a); Spirovo (2001 Shelekhov PTZ), Regimata (2012 Kravchenko); Tambitsy – Kaskosel (2013 Syrjätä). Collected from secondary forests dominated by conifers or aspen. The species is fairly common east of Lake Onega, as well as on islands between Zaonezhye and E shore of Lake Onega which are formed of moraine or sand deposits (almost all of these islands lie outside the Zaonezhye are delimited here). In Karelia it is very rare also on the W shores of Lake Onega, but in NWW the area extends up to Lake Segozero (Hultén 1971). – RDB EF: 3

Batrachium confervoides Fr. (B. eradicatum (Laest. ex Nyman) Fr., *Ranunculus confervoides* (Fr.) Fr., *R. eradicatus* (Laest. ex Nyman) F. Johansen) – *R:* Putkozero (Klyukina 1965); Shiltya (1999 Butsikih, Kryshen & Timofeeva; Kravchenko et al. 2000 a); Rogostrov Isl. (1999 Kashtanov; Kravchenko et al. 2000 a); Kazhma (2012 Kravchenko; Kravchenko & Timofeeva 2013). Rare throughout Karelia, more common in the north-westernmost part (e.g. in the Paanajärvi area). – RDB RK: 3 (LC→NT) *Batrachium dichotomum* (Schmalh.) Trautv. (*Ranunculus peltatus* Schranck, s. lat.) – *Sfq,* especially in Kizhi Skerries. (Norrlin 1871: *Fq.*

Caltha palustris L. – *Fq.* (Norrlin 1871: *Fqq.*

Consolida regalis Gray – *Rr:* Tolvuya (Günther 1880; Koroleva 1927–1928; Fagerström & Luther 1946; 1952 Ramenskaya & Zaykova PTZ, PZV; 1993 Antikainen PTZ); Padmozero (Bezas 1911; 1979 Ronkonen).

Ranunculus acris L. – *Fq.* (Norrlin 1871: *Fqq.*

Ranunculus auricomus L. aggr. – *Fq.* (Norrlin 1871: *Fqq.*

Ranunculus flammula L. – *R:* mainly in Kizhi Skerries. (Norrlin 1871: Svyatojnos (Simming); Kizhi (Günther).)

Ranunculus polyanthemos L. – *Sfq.* (Norrlin 1871: between V. Guba and Vegoruksa.

Ranunculus repens L. – *Fq.* (Norrlin 1871: *Fqq.*)
Betula nana L. – *Fq.* (Norrlin 1871: *Fq.*).

Ranunculus sceleratus L. – *Stfq.* (Norrlin 1871: *Stfq.*).

Thalictrum aquilegifolium L. – *R.* Kuzaranda (Hultén 1971); Tolvuya (Hultén 1971); Krokhino (1952 Ramenskaya & Zaykova: Kravchenko et al. 2000 a); between V. Niva and Vegoruksa (1896 Poppius); Chapozero (1896 Poppius); Kazhma (2013 Kravchenko); Lipovitsy (2013 Syrjänen, obs.); Tambitsy (2013 Syrjänen, obs.). – RDB EF: 3, RDB RK: 3 (NT)

Thalictrum flavum L. – *Fq.* (Norrlin 1871: *Fq.*).

Thalictrum simplex L. – *R.* Shunga (Norrlin 1871); Azhepnavolok (Sparre 1945); Kuzaranda (Hultén 1971); Telyatnikovo (Kuznetsov 1999); B. Klim., Kosel′ga (1999 Kuznetsov; Kizhi (Kuznetsov 1993; 2007 Znamenskiy PTZ); Volkoostrov (1996 Kuznetsov; Kuznetsov 1997); Rechnoy Isl. (2004 Kravchenko). – RDB EF: 4

Trollius europaeus L. – *Fq.* (Norrlin 1871: *Fq.*).

Chelidonium majus L. – *R.* Kizhi (Norrlin 1871: Svyatnavolok (Simming, Günther)).

Corydalis solida (L.) Clairv. – *R.* mainly in Kizhi Skerries, Kizhi and few adjacent islands and mainland (Kuznetsov 1993), as well as Berezovets Isl. by Klim Nos in the North (1988 Kuznetsov).

Fumaria officinalis L. – *Str.* (Norrlin 1871: *Fq.*).

Ulmus laevis Pall. – *Stfq* on Lake Onega shores in Kizhi Skerries (known from at least 30 localities); outside shores only V. Niva (Hultén 1971). (Norrlin 1871: Svyatnavolok (Kizhi).) – RDB EF: 3, RDB RK: 3 (LC→NT).

Humulus lupulus L. – *Rr.* Paleostrov (1999 Kravchenko & Kashtanov; Kravchenko et al. 2000 a). – RDB EF: 3, RDB RK: 3 (NT); cultivated and escaped in the area, and these occurrences are not protected.

Urtica dioica L. – *Fq.* (Norrlin 1871: *Fq.*).

Urtica urens L. – *Rr.* the only recent record: V. Guba (1999 Timofeeva). (Norrlin 1871: *Fq.*).

Alnus glutinosa (L.) Gaertn. – *Stfq.* (Norrlin 1871: *Fq.* in Tolvuya – V. Guba – Vegoruksa area, also Dianova Gora).

Alnus × hybrida Gaertn. (A. × pubescens Tausch) – *R.* (Norrlin 1871: V. Guba.)

Alnus incana (L.) Moench – *Fq.* (Norrlin 1871: *Fq.*). Var. *argentata* Norrlin (A. argentata (Norrl.) Tzvel.) described by Norrlin (1871: 168) on the basis of the material collected from the area (Shunga, Azhepnavolok & V. Guba).

Betula nana L. – *Fq.* (Norrlin 1871: *Fq.–fq.*).

Betula pendula Roth – *Fq.* (Norrlin 1871: *Fq.*). *Var. karelica* (MerciKl.) Hämet-Ahti is known from the entire Zaonezhye (Sokolov 1950; Atlas., 1973), and the number of known trees was estimated to be ca. 3 500 (Laur 1997). However, nowadays this race is under threat to disappear from the peninsula due to negative ecological and genetic factors and illegal cuttings (Vetchinnikova et al. 2013). – RDB RK: 2 (EN)

Betula pubescens Ehrh. – *Fq.* (Norrlin 1871: *Fq.*).

Montia fontana L. – *Rr.* only in Kizhi Skerries: Boyarstchina (Kuznetsov 1993); B. Lelik. (1998 Kashtanov); Zubovo (2012 Kravchenko); Pod′elniki (2012 Kravchenko, obs.). (Norrlin 1871: *Stfq–fq.*)

Agrostemma githago L. – Only old records: Kizhi (Hultén 1971).
*Alsine media L. (Stellaria media (L.) Cirillo) – Fq. (Norrlin 1871: *Fqq.)

Arenaria serpyllifolia L. – Fq. (Norrlin 1871: Fq.)

*Cerastium holosteoides Fr. (C. fontanum Baumg. subsp. vulgare (Hartm.) Greuter & Burdet) – Fq. (Norrlin 1871: *Fqq.)

*Cerastium scandicum (H. Gartner) Kuzen. (C. fontanum subsp. fontanum) – R. (Norrlin 1871: Azhepnavolok and Vegoruksa; as C. alpestre Hartm.)

*Coccyganthe flos-cuculi (L.) Rchb. (Lychnis flos-cuculi L.) – Fq. (Norrlin 1871: *Fq–fqq.)

*Dianthus barbatus L. – R: few records after 2007.

*Dianthus deltoides L. – Fq. (Norrlin 1871: Str.)

*Dianthus superbus L. – Rr: Tolovy (Hultén 1971).

*Hylebia nemorum Fourr. (Stellaria nemorum L.) – Str.

*Melandrium album (Mill.) Garcke (Silene latifolia Poir. subsp. alba (Mill.) Greuter & Burdet) – Fq. (Norrlin 1871: Fqq.)

*Moehringia trinervia (L.) Clairv. – Fqq. (Norrlin 1871: V. Guba.)

*Myosoton aquaticum L. (Moench.) – *Fqq in Kizhi Skerries: first recorded from Kizhi Isl. (1898 Cajander & Lindroth; Cajander & Lindroth 1900); numerous recent collections (Kuznetsov 1997, Kravchenko et al. 2000 a). – RDB EF: 3

*Oberna behen (L.) Ikonn. (Silene vulgaris (Moench) Garcke) – Fq. (Norrlin 1871: *Fqq–fq.)

*Psammophiliella muralis (L.) Ikonn. (Gypsophila muralis L.) – only old records: between Tolovy and Kosmozero (Norrlin 1871).

*Sagina nodosa (L.) Fenzl – Str. (Norrlin 1871: *Fqq in NE (Azhepnavolok – Padmozero).)

*Sagina procumbens L. – *Fqq. (Norrlin 1871: *Fqq.)

*Saponaria officinalis L. – Rr, few records after 2010.

*Scelenteranthus annuus L. – Str.

*Scelenteranthus polycephalus L. – Fq.

*Silene nutans L. – only old records: Mizhostrov (Bezays 1911); Kuzaranda (H; Bezays 1911); Harlovo (Hultén 1971). – RDB RK: 3 (LC→NT)

*Spergula sativa Boenn. (S. arvensis L. subsp. sativa (Mert. & W. D. J. Koch) Čelak.) – P. (Norrlin 1871: *Fq, as S. arvensis s. lat.)

*Stellaria crassifolia Ehrh. – Rr: Kaskoselga (2013 Syrjänen, obs.); Tambitsy (2013 Syrjänen, obs.).

*Stellaria graminea L. – Fq. (Norrlin 1871: *Fqq.)

*Stellaria palustris Hoffm. – Fqq.

*Viscaria viscosa (Scop.) Aschers. (Lychnis viscosa L.) – R.

*Atriplex patula L. – R.

*Chenopodium album L. – Fq. (Norrlin 1871: *Fqq; incl. C. suecicum.)
Persicaria amphibia (L.) Gray – Fq. (Norrlin 1871: Fqq.)
Persicaria hydropiper (L.) Spach – Stfq. (Norrlin 1871: Fqq.)
Persicaria lapathifolia (L.) Spach – Str. (Norrlin 1871: Fqq.)
Persicaria minor (Huds.) Opiz – Fq. (Norrlin 1871: Fqq; as Polygonum mitis Schr.
Persicaria tomentosa (Schr.) Bicknell (Persicaria lapathifolia subsp. pallida (With.) S. Ekman & T. Knutsson) – Fq. (Norrlin 1871: Shunga.)
Polygonum arenastrum Boreau (P. aviculare subsp. microspermum (Jord. ex Boreau) Beher) – R.
Polygonum aviculare L. – Fq. (Norrlin 1871: *Fqq.)
*Hypericum maculatum Crantz – Fq. (Norrlin 1871: *Fqq.)
Hypericum triandra Schkuhr. – Rr. Azhepnavolok (Sparre 1945); V. Guba (1870 Norrlin; Norrlin
1871; 2010 Kravchenko); Vegoruksa area (Hultén 1971). – RDB EF: 3, RDB RK: 3 (VU)
*Viola arvensis Murray – Str. (Norrlin 1871: *Fqq.)
Viola canina L. – Rr. Mikkovo (1999 Timofeeva, Rudkovskaya & Kryshen); V. Guba (2010 Kravchenko), [Norrlin (1871) did not separate V. canina from V. nemoralis, see below].
Viola epipsila Ledeb. – Fq. (Norrlin 1871: *Fqq-fqq.)
Viola mirabilis L. – Stfq. (Norrlin 1871: *Stfq.)
Viola nemoralis Kütz. (V. montana auct. non L.) – Fq. (Norrlin 1871: *Fqq, as V. flavicornis (Sm.) Norrlin (1871), as well as several recent authors (e.g., Marcussen 2010) do not separate V. nemoralis from V. canina.
Viola palustris L. – Fq. (Norrlin 1871: *Fqq-fqq.)
Viola riviniana Rchb. – Fq. (Norrlin 1871: *Fq.)
Viola selkirkii Pursh ex Goldie – Str. (Norrlin 1871: P)
Viola tricolor L. – Fq. (Norrlin 1871: Fq.)

Arabidopsis thaliana (L.) Heynh. – Fq. (Norrlin 1871: Sennaya Guba (Simming)).

Bunias orientalis L. – Rr.

Andromeda polifolia L. – Str. (Norrlin 1871: Fq in V. Guba).

Salix starkeana Willd. (*S. livida* Wahlenb.) – Str. (Norrlin 1871: V. Guba – Vegoruksa.)
Arctostaphylos uva-ursi (L.) spreng. – **Str.** (Norrlin 1871: *Fq.*).

Calluna vulgaris (L.) Hull. – **Fq.** (Norrlin 1871: *Fq.*).

Chamaedaphne calyculata (L.) Moench. – **Fq.** (Norrlin 1871: *Fq.*).

Ledum palustre L. (Rhododendron tomentosum Harmaja) – **Stfq.** (Norrlin 1871: *Fq* in V. Guba – Vegoruksa.)

Oxyccoccus microcarpus Turcz. ex Rupr. (Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh.) – **Rr.** only field notes, e.g. Lake Vanchozero (2012 Kravchenko, obs.).

Oxyccoccus palustris Pers. (V. oxyccocos L.) – **Stfq.** (Norrlin 1871: *Fq*–*fqq.*).

Vaccinium myrtillus L. – **Fq.** (Norrlin 1871: *Fq.*).

Vaccinium uliginosum L. – **Stfq.** (Norrlin 1871: *Fq* in SW part.)

Vaccinium vitis-idaea L. – **Fq.** (Norrlin 1871: *Fq.*).

Moneses uniflora (L.) A. Gray. – **Str.** (Norrlin 1871: *Str–P.*)

Orthilia secunda (L.) House. – **Fq.** (Norrlin 1871: *Fq.*).

Pyrola chlorantha Sw. – **R.** (Norrlin 1871: *Pt.*)

Pyrola minor L. – **Stfq.** (Norrlin 1871: *Fq.*).

Pyrola media Sw. – **R.**

Pyrola rotundifolia L. – **Fq.** (Norrlin 1871: *Fq*–*fqq.*). *P. rotundifolia var. cloranthoides* Norrlin (1871:160) was described from V. Guba.

Empetrum nigrum L. – **R.** (Norrlin 1871: *Fq.*). Perhaps only subsp. *hermaphroditum* (Hagerup) Böcher (E. hermaphroditum Hagerup) occurs in the area.

Androsace filiformis Retz. – **R.** few records since 2010.

Lysimachia vulgaris L. – **Fq.** (Norrlin 1871: *Stfq.*).

Naumburgia thyrsiflora (L.) Rchb. (Lysimachia thyrsiflora L.) – **Fq.** (Norrlin 1871: *Stfq.*)

Trientalis europaea L. – **Fq.** (Norrlin 1871: *Fq*–*fqq.*).

Tilia cordata Mill. – **Rr.** but *fq* in Kizhi Skerries. Sometimes forms pure secondary herb rich forests on some islands like Bereзовets, Dolgiy, Gryz, Kalgov, Uimy, etc. (relevés provided by Kuznetsov 1997). According to Günther (1880: 19) occupies «…almost all islands in Lake Onega». (Norrlin 1871: Shunga.)

Abutilon theophrasti Medik. – **Rr.** V. Guba (2010 Kravchenko).

Lavatera thuringiaca L. – **Rr.** V. Guba (2010 Kravchenko); Tolvuya (2011 Timofeeva); Kazhna (2012 Timofeeva).

Malva pusilla Sm. – Only old records: mainly during World War II (Fagerstöm & Luther 1945; Hultén 1971).

Euphorbia helioscopia L. – Only old records: Tolvuya (Günther 1880; Koroleva 1927–1928).

Euphorbia virgata Waldst. & Kit. (E. esula L. subsp. *tommassiania* (Bertol.) Kuzmanov) – **Rr.**

Daphne mezereum L. – **Fq.** (Norrlin 1871: *Pt.*)

Chrysosplenium alternifolium L. – **Rr.** (Norrlin 1871: *Pt.*)

Saxifraga nivalis L. – **Rr.** Azhepnavolok (Sparre 1945; 1996 Kashtanov); Telpozero (1952 Ramenskaya & Zaykov; Kravchenko et al. 2000 a); Vegoruksa, Tolvuya & Fedotovo (Hultén 1971, but no vouchers in H); (Norrlin 1871: Azhepnavolok.). – RDB EF: 3

Hylotelephium triphyllum (Haw.) Holub (Hylotelephium telephium (L.) H. Ohba, coll.) – **Rr.** Kizhi Isl. (Kravchenko 2007).

Sedum acre L. – **R.** (Norrlin 1871: *Fq* in Shunga.)

Ribes nigrum L. – Stfq. (Norrlin 1871: Stfq in V. Guba.)

Ribes spicatum E. Robson – Fq. (Norrlin 1871: Stfq, as R. rubrum L.)

Parnassia palustris L. – Str. (Norrlin 1871: *Fqq.)

Drosera anglica Huds. – Str. (Norrlin 1871: between V. Guba and Vegoruksa.)

Drosera rotundifolia L. – Stfq. (Norrlin 1871: *Fq.)

Alchemilla acutiloba Opiz – Fq. (Norrlin 1871: *Fqq; as Alchemilla vulgaris L.)

Alchemilla baltica Sam. ex Juz. – Rr.

Alchemilla glaucescens Wallr. – Stfq.

Alchemilla hirsuticaulis H. Lindb. – Rr.

Alchemilla micans Buser – Str.

Comarum palustre L. – Fq. (Norrlin 1871: *Fqq.)

Cotoneaster laxiflorus Jacq. ex Lindl. (C. melanocarpus (Bunge) Loudon; C. vulgaris auct. non Lindl.) – P. (Norrlin 1871: Azhepnavolok, Shunga; collectively as C. vulgaris).

Filipendula ulmaria (L.) Maxim. – Fq. (Norrlin 1871: *Fqq.)

Fragaria vesca L. – Fq. (Norrlin 1871: *Fqq.)

Geum rivale L. – Fq. (Norrlin 1871: Fqq in Shunga and V. Guba.)

Geum urbanum L. – Stfq. (Norrlin 1871: Shunga.)

Padus avium Mill. (Prunus padus L.) – Fq. (Norrlin 1871: *Fqq.)

Potentilla anserina L. – Fq. (Norrlin 1871: Fq.)

Potentilla argentea L. – Fq. (Norrlin 1871: Fqq in Shunga.)

Potentilla erecta (L.) Raeusch. – Fq. (Norrlin 1871: *Fqq.)

Potentilla goldbachii (Rupr.) Rupr. (P. thuringiaca subsp. goldbachii (Rupr.) Th. Wolf) – Rr: Kizhi Isl. (1896 Poppius); Toluyuva (1993 Kravchenko).

Potentilla heidenreichii Zimmeter (P. intermedia subsp. heidenreichii (Zimmeter) Tzvelev) – Rr, only old records: Shunga (Norrlin 1871).

Potentilla “impolita” auct., non Wahlenb. – Str.

Potentilla intermedia L. – Stfq. (Norrlin 1871: Shunga.)

Rosa majalis Herrm. – Fq. (Norrlin 1871: V. Guba, fq in Shunga.)

Rubus arcticus Herrm. – Fq. (Norrlin 1871: V. Guba, Shunga.)

Rubus chamaemorus L. – Str. (Norrlin 1871: Shunga, V. Guba.)

Rubus chamaemorus L. – Stfq. (Norrlin 1871: Soslanovnavolok, V. Guba.)

Rubus idaeus L. – Fq. (Norrlin 1871: Fqq.)
Lathyrus palustris

Vicia sepium

Lythrum salicaria

Vicia tetrasperma

Kravchenko

Peplis portula

Chamaenerion angustifolium

Not recorded from V. Guba in 1999–2013.

Lathyrus vernus

Linum

Oxalis acetosella

Rubus saxatilis

Sorbus aucuparia

Amoria hybrida (L.) C. Presl (Trifolium hybridum L.) – P.

Amoria repens (L.) C. Presl (T. repens L.) – Fq. (Norrlin 1871: Fqq.)

Chrysaspis spadicea (L.) Greene (T. spadiceum L.) – R. (Norrlin 1871: Fq in Shunga.)

*Galega orientalis Lam. – Rr. V. Niva (2011 Timofeeva.)

L. – Rr. V. Guba (1942/1943 Kujala, obs.; Hultén 1971); but stfq in Kizhi

Kerries: Kizhi Isl. (1994 Kuznetsov; Kuznetsov 1997); Kalgov Isl. (1999 Kashтанов); Bakol’nikovskiy Isl. (1999 Kashtanov); etc.

Lathyrus vernus (L.) Bernh. – Fq. (Norrlin 1871: *Stfq.)

*Melilotus officinalis (L.) Lam. – Rr. Tolvuya (Fagerström & Luther 1945); Kazhma (2012 Kravchenko).

Trifolium medium L. – Fq. (Norrlin 1871: V. Guba.)

Trifolium pratense L. – Fq. (Norrlin 1871: Fqq.)

*Vicia cracca (L.) Gray – Stfq in Shunga.

Vicia sepium L. – Fq. (Norrlin 1871: *Fqq.)

Vicia sylvatica L. – Str. (Norrlin 1871: *P)

Vicia tetrasperma (L.) Schreb. – R.

Lythrum salicaria L. – Fq. (Norrlin 1871: Fq.)

Peplis portula L. Str. – R: several recent records from B. Klim. (Norrlin 1871: Fq in V. Guba.)

Not recorded from V. Guba in 1999–2013.

Chamaenerion angustifolium (L.) Scop. (Epilobium angustifolium L.) – Fq. (Norrlin 1871: *Fqq.)

**Circaea alpina L. – Str. (Norrlin 1871: B. Klim.)

*Epilobium adenocaulon Hausskn. – Fq.

Epilobium collinum C. C. Gmel. – R.

Epilobium montanum L. – Str. (Norrlin 1871: *Stfq–Fq.)

Epilobium palustre L. – Fq. (Norrlin 1871: Stfq.)

Myriophyllum alterniflorum DC. – Fq. (Norrlin 1871: R in Shunga.)

Myriophyllum sibiricum Kom. – Str. (Norrlin 1871: Fq; as M. spicatum L.)

Linum catharticum L. – Str. (Norrlin 1871: Shunga – Padmozero; V. Guba.)

Oxalis acetosella L. – Fq. (Norrlin 1871: *Fqq.)
Aegopodium

Chamaepericlymenum suecicum – RDB EF: 1, RDB RK: 3 (VU)

Geranium

Kravchenko

Impatiens

Polygala amarella Crantz – R.

Geranium sylvaticum – Fq. (Norrlin 1871: Fqq.)

Impatiens noli-tangere – Rr. Putkozerka River (1999 Butskih, Kryshen & Timofeeva);

Anchusa

Kravchenko

*Anchusa officinalis L. – Rr. Tolvuya (Fagerström & Luther 1946).

Reports of the Finnish Environment Institute 40 | 2014

175
Reports of the Finnish Environment Institute 40 | 2014

Gentianella amarella (L.) Börner – *Rr.* Tolvuya (1888 Kihlman); V. Guba, Tambitsy – Kaskoselga (2013 Syrjänen). (Norrlin 1871: see below.) – RDB EF: 4

Gentianella lingulata (C. Agardh) N. M. Pritch. (*G. amarella var. lingulata* (C. Agardh) Karlsson) – *Stfq.* [Norrlin (1871) treated *G. amarella* collectively and included f. *lingulata*; the frequency for collective *G. amarella* is *fq*]. – RDB EF: 3

Menyanthes trifoliata L. – *Fq.*

Linnaea borealis L. – *Fq.*

Lonicerapallasi Ledeb. (*L. caerulea* L.) – *Stfq.* (Norrlin 1871: *Fq*.)

Lonicera xylosteum L. – *Fq.* (Norrlin 1871: *Fq*.)

Adoxa moschatellina L. – *Str.*

Knapia arvensis (L.) Coul. – *Fq.* (Norrlin 1871: *Fqq*).

Cuscuta europaea L. – *Str.* (Norrlin 1871: V. Guba.)

Polemonium boreale Adams. – *Rr.* Azhepnavolok (1870 Norrlin; Norrlin 1871; 1888 Kihlman; 1888 Günther LE; 1896 Poppius; 1907 Bezays & Verdi LE; 1942 Sparre H; Sparre 1945; 1997 Kashtanov; 2001 Kaznetsova PTZ); Shunga (1979 Ronkonen, obs.; Kravchenko et al. 2000 a); Padmozero (1870 Norrlin; Norrlin 1871; 1875 Günther H; 1942 Kaleza H; 1999 Kaznetsov; Kravchenko et al. 2000 a). *Polemonium onegense* Klok. was described on the basis of the material collected from Azhepnavolok by Bezays and Verdi in 1907 (Klokov 1955). – RDB EF: 3, RDB RK: 3 (VU)

Polemonium caeruleum L. – *Stfq.*

Buglossoides arvensis (L.) I. M. Johnst. (*Lithospermum arvense* L.) – Only old records: everywhere (Koroleva 1927–1928); Tolvuya (Fagerström & Luther 1946). (Norrlin 1871: *Fq*).

Cynoglossum officinale L. – Only old records: Tolvuya (Fagerström & Luther 1946), Shunga (Hultén 1971).

Echium vulgare L. – *Rr.* Tolvuya (Fagerström & Luther 1946); B. Klim. (1999 Kravchenko & Kashtanov).

Lappula squarrosa (Retz.) Dumort – Only old records: Tolvuya (Koroleva 1927–1928).

Myosotis arvensis (L.) Hill – *Fq.* (Norrlin 1871: *Stfq–fq*.)

Myosotis caespitosa Schultz (*M. laxa* subsp. *caespitosa* (Schultz) Nord.) – *Str.* (Norrlin 1871: *Fq*.)

Myosotis palustris (L.) (M. scorpioides L.) – *Fq.* (Norrlin 1871: *Fq*.)

Myosotis stricta Link ex Roem. & Schult. – *R.*

Nonea rossica Steven (*Nonea pulla* DC.) – Only old records: Azhepnavolok (Sparre 1945).

Pulmonaria obscura Dumort. – *Rr.* V. Guba (1942/1943 Kujala, obs.; Hultén 1971).

Symphytum caucasicum M. Bieb. – *Rr.* Kizhi Isl. (2013 Timofoeva); Rechka (2012 Kravchenko); Lambasruchei (2013 Timofoeva).

Acinos arvensis (Schur) Dandy (*Satureja acinos* (L.) Scheele) – *Str.* (Norrlin 1871: Padmozero.)

Clinopodium vulgare L. – *Fq.*

Dracocephalum ruyschiana L. – *R.* mainly in Kizhi Skerries: Kosmozero (1896 Poppius); B. Klim., Sennaya Guba (1898 Cajander & Lindroth), Pervye Garnitsy (1998 Kashtanov;

Galeopsis bifida Boenn. – *Fq.*

Galeopsis ladanum L. – *Rr*, the only recent record: Paleostrov (2001 Kuznetsova PTZ). (Norrlin 1871: *Fq.*)

Galeopsis speciosa Mill. – *Fq.* (Norrlin 1871: *Fq.*)

Galeopsis tetrahit L. – *Fq.* (Norrlin 1871: *Fq.; G. bifida* included.)

Glechoma hederacea L. – *Str*, mainly in Kizhi Skerries. (Norrlin 1871: Svyatoinos (Simming, Kullhem) and Kizhi “copiose” (Günther).)

Lamium amplexicaule L. – Only old records: Shunga and Padmozero (Norrlin 1871).

Lamium dissectum With. (L. hybridum Vill.) – *Str.*

Lamium purpureum L. (L. purpureum var. incisum (Willd.) Pers.) – *Stfq.* (Norrlin 1871: *Fq.*)

Lycopus europaeus L. – *Fq.* (Norrlin 1871: Shunga.)

Mentha arvensis L. – *Fq.* (Norrlin 1871: *Fq.*)

Prunella vulgaris L. – *Fq.* (Norrlin 1871: *Fq.*)

Scutellaria galericulata L. – *Fq.* (Norrlin 1871: *Fq.*)

Stachys palustris L. – *Fq.* (Norrlin 1871: *Fq.; Unitsa.*)

Stachys sylvatica L. – *R.*

Thymus serpyllum L. – *Str.* (Norrlin 1871: *Fq in Shunga."

Callitriche palustris L. – *Fq.* (Norrlin 1871: *Fq?*

Hyoscyamus niger L. – Only old records: Paleostrov (Günther 1880; Koroleva 1927–1928); Tolvuva (Fagerström & Luther 1946).

Solanum dulcamara L. – **Str.** mainly Kizhi Skerries.

Euphrasia brevifila Burn. & Greml. (*E. stricta* J. F. Leh. var. *stricta*) – **Fqq.**

Euphrasia hirtella auct. (*E. rostkoviana* Hayne subsp. *fennica* (Kihlm.) Karlsson) – **Str.**

Euphrasia officinalis L. s. lat. – **Rr.** V. Niva (1999 Timofeeva & Rudkovskaya). (Norrlin 1871: *Fq–fqq.**)

Euphrasia onegensis A. Cajander – **?Rr.** Tolvuya (syntypus in H).

Euphrasia parviflora Juz. (*E. nemorosa* (Pers.) Wallr.) – **Stfq.**

Euphrasia vernalis List (*E. stricta* J. P. Wolff ex J. F. Leh. var. *tenuis* (Brenner) Jalas) – **Str.**

E. stricta (Brenner) Jalas – **Str.**

Limosella aquatica L. – **Rr.** V. Niva (Hultén 1971); Kizhi area (Hultén 1971); Kazhma (2012 Kravchenko). (Norrlin 1871: V. Guba.) – RDB EF: 4

Linaria vulgaris Mill. – **Fq.** (Norrlin 1871: *Stfq.**)

Melampyrum nemorosum L. – **Str.**

Melampyrum pratense L. – **Fq.** (Norrlin 1871: *Fq.**)

Melampyrum sylvaticum L. – **Fq.** (Norrlin 1871: *Fqq.**)

Odontites vulgaris – **Str.** (Norrlin 1871: *Fq in Shunga.**)

Pseudolysimachion longifolium (L.) Opiz (*Veronica longifolia* L.) – **Fq.** (Norrlin 1871: *Fq.**)

Pseudolysimachion spicatum (L.) Opiz (*Veronica spicata* L.) – **Rr.** Kosmozero (1896 Poppius); B. Klim., Sennaya Guba (1898 Cajander & Lindroth; Cajander & Lindroth 1900); B. Zarevo and Poyalitsinskaya (both 1943 Fagerström & Luther 1946); Telpozero (1952 Ramenskaya & Zaykova); Fomino (1988 Kravchenko, obs.); Zimnyay Mt. (1988 Kravchenko); Svyatuha Bay (1999 Butskih, Kravchenko et al. 2000 a). – RDB EF: 3, RDB RK: 3 (NT)

Rhinanthus minor L. – **Fq.** (Norrlin 1871: *Fqq.**)

Rhinanthus serotinus (Schönh.) Borný – **Fq.** (Norrlin 1871: *Fqq.**)

Scrophularia nodosa L. – **Str.** (Norrlin 1871: Shunga, V. Guba.)

Verbacum nigrum L. – **Str.** (Norrlin 1871: between V. Guba and Kosmozero, *fq* in V. Guba.)

Veronica arvensis L. – **Str.**

Veronica chamaedrys L. – **Fq.** (Norrlin 1871: *Fqq.**)

Veronica officinalis L. – **Fq.** (Norrlin 1871: *Fqq.**)

Veronica persica Poir. – **Rr.** V. Guba (2010 Kravchenko).

Veronica scutellata L. – **Str.** (Norrlin 1871: V. Guba; Shunga (as var. *villosa* L.))

Veronica serpyllifolia L. – **Fq.** (Norrlin 1871: *Fqq.**)

Veronica verna L. – **Str.** (Norrlin 1871: *Fqq.**)

Plantago lanceolata L. – **Stfq:** especially in Kizhi Skerries. (Norrlin 1871: Kizhi Isl. (Günther.).)

Plantago major L. – **Fq.** (Norrlin 1871: *Fqq.**)

Plantago media L. – **Str.** (Norrlin 1871: Tolvuya.)

Utricularia vulgaris L. – **Str.** (Norrlin 1871: *Fq in the north.**)

Utricularia intermedia Hayne – **Str.** (Norrlin 1871: *Fq.**)

Utricularia minor L. – **R.**

Utricularia vulgaris L. – **Stfq** (Norrlin 1871: *Stfq.**)

Hipppurus vulgaris L. – **Str.** (Norrlin 1871: Shunga.)

Campanula cervicaria L. – **Rr.** B. Klim., Kuznetsy; Kalgostrov Isl.; Kuzaranda and Telyatnikovo (all Bezays 1911); V. Guba (1942/1943 Kujala, obs.); Perguba area and V. Guba (Hultén 1971); B. Klim., Medvezhia Gora (1997 Kashtanov; Kravchenko et al. 2000 a); Yuzhnyi Oleniy...
Bidens tripartita
Antennaria dioica

1983, no vouchers available)

Bidens cernua
Bidens radiata

Kazhma (2012

Crepis tectorum
Crepis paludosa
cords from ca. 15 places in meadows, roadsides, fields and shores. – RDB EF: 4, RDB RK: 3 (LC→NT)

Campanula patula L. – Fq. (Norrlin 1871: *Fq–fqq.)
Campanula persicifolia L. – Stfq. (Norrlin 1871: Fq.)
Campanula rapunculoides L. – Stfq. (Norrlin 1871: Fq.)
Campanula rotundifolia L. – Fq. (Norrlin 1871: Fq.)

* Lobelia dortmanna L. – Stfq, especially in Kizhi Skerries. Species is known from ca 25 localities. (Norrlin 1871: P.) – RDB RF: 3, RDB RK: 3 (LC→NT)

Achillea millefolium L. – Rr

* Achillea nobilis L. – Rr: Pryalichinskaya (Fagerström & Luther 1946); V. Guba (Ramenskaya 1983, no vouchers available)

Antennaria dioica (L.) Gaertn. – Fq. (Norrlin 1871: *Fqq.)

*Athens arvensis L. – R. (Norrlin 1871: V. Guba.)

*Athens tinctoria L. – Only old records: V. Guba (Norrlin 1871); Oyatevstchina (Bezais 1911); Kizh Isl., Tolvuya and V. Guba (Fagerström & Luther 1946).

* Arctium tomentosum Mill. – Stfq. (Norrlin 1871: Stfq in Shunga.)

* Artemisia absinthium L. – Rr: Tolvuya (Fagerström & Luther 1946); V. Guba (2010 Kravchenko).

* Artemisia rapestris L. – Only old records: Shunga (Fagerström & Luther 1946).

* Artemisia vulgaris L. – Stfq. (Norrlin 1871: V. Guba and fq in Tolvuya.)

Bidens cernua L. – Str: mainly in Kizhi Skerries. (Norrlin 1871: Fq in V. Guba.)

Bidens radiata Thuill. – R.

Bidens tripartita L. – Fq. (Norrlin 1871: Fq.)

* Carduus crispus L. – Str. (Norrlin 1871: Fq.)

Centaurea jacea L. – Fq. (Norrlin 1871: Fqq in Shunga.)

Centaurea phrygia L. – Fq. (Norrlin 1871: Fq–fqq.)

Centaurea scabiosa L. – Stfq. (Norrlin 1871: Fq.)

* Cichorium intybus L. – Only old records: Shunga and V. Guba (Fagerström & Luther 1946).

Cirsium heterophyllum (L.) Hill. – Fq. (Norrlin 1871: *Fq.)

Cirsium oleraceum (L.) Scop. – Str.

Cirsium palustre (L.) Scop. – Stfq. (Norrlin 1871: *Fq.)

* Cirsium setosum (Willd.) Besser (C. arvense var. mite (Wimm. & Grab.) Lange) – Fq. (Norrlin 1871: *Fqq; as Cirsium arvense L. s. lat.)

* Cirsium vulgare (Savi) Ten. – P. (Norrlin 1871: Shunga and fq in V. Guba.)

Crepis biennis L. – Str: first recorded from Tolvuya (Fagerström & Luther 1946); recent records from ca. 15 places in meadows, roadsides, fields and shores. – RDB EF: 4

Crepis paludosa (L.) Moench – P. (Norrlin 1871: V. Guba.)

Crepis tectorum L. – R. (Norrlin 1871: *Fq.)

* Cyanus segetum (L.) Hill (Centaurea cyanus L.) – R. (Norrlin 1871: *Fq.)

* Erigeron acris L. – Fq. (Norrlin 1871: *Fq.)

* Erigeron uralensis Less. (E. acris subsp. brachycephalus (H. Lindb.) Hiitonen) – Str.
Eupatorium cannabinum L. – *Str.* Kizhi Isl. and Sennaya Guba (both in 1898 Cajander & Lindroth; Cajander & Lindroth 1900) and ca. 25 recent records, mainly from Kizhi Skerries. – RDB EF: 3, RDB RK: 3 (LC→NT)

Gnaphalium uliginosum L. – *Fq.* (Norrlin 1871: *Fqq.*

Hieracium caesiiflorum Almq. ex Norrl. (*H. subcaesium* auct.) – Paleostrov (2004 Uotila);
Kizhi (1898 Liro & Cajander).

Hieracium chloreliceps Norrl. ex Üksip – Sennaya Guba (1898 1898 Liro & Cajander).

Hieracium incurveus Norrl. – B. 1898 Liro & Cajander).

Hieracium laeticolor (Almq.) Lönn. (*H. proxiliforme* Norrl.) – Kizhi (1898 Liro & Cajander);
Sennaya Guba (1898 Liro & Cajander); Paleostrov (2004 Uotila).

Hieracium ravidum Brenner (*H. galbanum* (Dahlst.) Brenner) – Kizhi (1898 Liro & Cajander);
Sennaya Guba (1898 Liro & Cajander); Paleostrov (2004 Uotila).

Hieracium sagittitopentos Norrl. – Sennaya Guba (1898 Liro & Cajander).

Hieracium umbellatum L. – *Fqq.* (Norrlin 1871: *Fqq.*

Inula britannica L. – Only old records: Pryalichinskaya (Fagerström & Luther 1946).

Leontodon autumnalis L. – *Fq.* (Norrlin 1871: *Fq–fq.*

Leontodon hispidus L. – *Str.* (Norrlin 1871: Between Tolvuya and V. Guba.)

Leucanthemum ircutianum Turcz. ex DC. (*L. vulgare* L.) – *Fq.* (Norrlin 1871: *Fqq.*

Ligularia sibirica (L.) Cass. – *Rr.* (Norrlin 1871: Unitsa (Simming).)

Mulgedium sibirum (L.) Cass. ex Less. (*Lactuca sibirica* (L.) Maxim.) – *Str.* (Norrlin 1871: *Str* in V. Guba.)

Petasites frigidus (L.) Fr. – *Rr.* Kuzaranda (Hultén 1971); Lake Kopanetz (1999 Kravchenko & Kashtanov); Ryabovo (2010 Kravchenko); Verkhnee Myagrozero (2012 Kravchenko); Lipovitsy and Uzkie Salmy (2013 Kravchenko); Tipintsy (2013 Syrjänen, obs.). (Norrlin 1871: Shunga – Tolvuya.)

Picris hieracioides L. – *Str.* (Norrlin 1871: *Str*.

Pilosella × cymiflora (Nägeli & Peter) S.Bråut. & Greuter (*Hieracium cymiflorum* Nägeli & Peter; *H. conferciens* Norrl.; *P. officinarum* < *P. pubescens*) – Kizhi (1898 Liro & Cajander);
Sennaya Guba (1898 Liro & Cajander). *Hieracium conferciens* Norrl. (1904) was described on the basis of the cited collections from Kizhi and Sennaya Guba.
Pilosella × fallacina (F.W. Schultz) F.W. Schultz (Hieracium fallacineum F.W. Schultz; Pilosella officinarum × Pilosella praetexta × Pilosella pubescens) – Sennaya Guba (1898 Liro & Cajander).

Pilosella × flagellaris (Willd.) Arv.-Touv. (Hieracium flagellare Willd.; Pilosella officinarum > Pilosella onegensis) – Sennaya Guba (1898 Liro & Cajander); probably also Kalgov Isl. (1986 Kuznetsov).

Pilosella × glomerata (Froel.) Fr. (Hieracium glomeratum Froel.; P. pubescens × P. onegensis) – B. Klim. (1997 Kashtanov; 2004 Piirainen); Sennaya Guba (1898 Liro & Cajander).

Pilosella officinarum F. Schultz & Sch. Bip. (Hieracium pilosella L.) – Stfq; Kizhi (1898 Liro & Cajander); Sennaya Guba (1898 Liro & Cajander); Radkolye Isl. (1988 Kuznetsov); Pod’elniki (2012 Kravchenko). (Norrlin 1871: *Fq–fq.)

Pilosella onegensis Norrl. (Hieracium onegense (Norrl.) Norrl.; H. caespitosum auct.) – Stfq. Not documented by specimens. This species is rather common in Kon (Norrlin 1871: *Stfq; as H. caespitosum) in spite of the absence of preserved specimens from Zaonezhe.

Pilosella peleteriana (Mér.) F. Schultz & Sch. Bip. (Hieracium peleterianum Mér.) – Rr; Sennaya Guba (1898 Liro & Cajander).

Pilosella pubescens Norrl. (Hieracium pubescens Hellstr.; H. cymosum auct., H. vaillantii auct.) – Stfq; Sennaya Guba (1898 Liro & Cajander); Volkostrov (1986 Kuznetsov); Kizhi (1986 Kuznetsov). (Norrlin 1871: *Fq.)

Ptarmica cartilaginea (Ledeby. ex Rchb.) Ledeby. (Achillea salicifolia Besser) – Rr: Shunga (Putkzero) (Norrlin 1871, 1979 Ronkonen, 2012 Kravchenko); all records from shores of the same lake.

Saussurea alpina L. – Rr: Fedotovo (Bezais 1911); Tolvuya (Fagerström & Luther 1946); Karasozero (1999 Kuznetsov); Tipinitsy – Kaskoselga (2013 Syrjänen).

*Senecio vulgaris L. – Str.

Solidago virgaurea L. – Fq. (Norrlin 1871: Fq between V. Guba and Vegoruksa.)

*Sonchus arvensis L. – Str. (Norrlin 1871: *Fqq.)

*Sonchus asper (L.) Hill – R. (Norrlin 1871: Shunga and V. Guba.)

*Sonchus oleraceus L. – R. (Norrlin 1871: in the whole Zaonezhye Peninsula.)

Tanacetum vulgare L. – Fq. (Norrlin 1871: Str, but fq in V. Guba; Unitsa (Kullhem).)

Taraxacum officinale Wigg. coll. – Fq. (Norrlin 1871: *Fq.)

Tripleurospermum inodorum (L.) Sch. Bip. – Fq. (Norrlin 1871: *Fqq.)

Trommsdorffia maculata (L.) Bernh. (Hypochaeris maculata L.) – Stfq. (Norrlin 1871: V. Guba.)

Tussilago farfara L. – Fq. (Norrlin 1871: *P)

Paris quadrifolia L. – Fq. (Norrlin 1871: Fq in V. Guba.)

Convalaria majalis L. – Fq. (Norrlin 1871: Fq.)

Maianthemum bifolium (L.) F. W. Schmidt – Fq. (Norrlin 1871: *Fqq.)

Polygonatum odoratum (Mill.) Druce – Str. (Norrlin 1871: Azhepnavolok and near Shunga.)

Allium ibericum L. – Str: only in Kizhi Skerries, first record at Kizhi Isl. (1995 Heikilä PTZ; Kuznetsov 1997); also Orozh Isl. (1998 Kashtanov); Kalgov Isl. (1999 Kashtanov); ca. 10 localities after 1997 at B. Klim.

Iris pseudacorus L. – Stfq. (Norrlin 1871: V. Guba.)

Coeloglossum viride (L.) Hartm. – Str: mainly in Kizhi Skerries. (Norrlin 1871: *P-stfq.)

Corallorhiza trifida Châtel. – R. (Norrlin 1871: *Fq.)

*,**,Cypripedium calceolus L. – R: Kuzaranda (Günther 1880); Yuzhnyi Oleniy Isl. (1896 Poppiais); Lambasruchey (Hultén 1971); Zagorskoe Lake (1952 Ramenskaya & Zaykova).

Dactylorhiza cruenta (O. F. Müll.) Soó (Dactylorhiza incarnata subsp. cruenta (O. F. Müll.) Nyman) – Rr: only old records: Azhepnavolok (Sparre 1945); Tolvuya (Hultén 1971). – RDB EF 3, RDB RK 3 (NT)

Dactylorhiza fuchsii (Druce) Soó – Stfq.

Dactylorhiza incarnata (L.) Soó – Str. (Norrlin 1871: *Stfq-fq.)

Dactylorhiza maculata (L.) Soó – Fq. (Norrlin 1871: *Fq; incl. D. fuchsii.)*

Dactylorhiza traunsteineri (Saut. ex Rehb.) Soó s. lat. – R: V. Guba (1896 Poppiais, 2013 Kravchenko), Lambasruchey (1907 Bezays & Verdi; Bezays 1911); Unitsa (Hultén 1971); Putkozero (1952 Ramenskaya, obs.); Palttega (1999 Butsikhi, Kryshen & Timofeeva); Oyat-vestchina (Kuznetsov 1993; Kuznetsov et al. 1999, 2012 Kravchenko); Kuzaranda, Tipinity (2004 Kravchenko); B. Klim., Stchuchia Bay (Markovskaya et. al. 2007); Turastamozero (2012 Kravchenko; Kravchenko & Timofeeva 2013); Poly (2013 Kravchenko). (Norrlin 1871: *Stfq, as var. curvifolia Nyl.) – RDB RF: 3, RDB RK: 3 (LC→NT)

Epipactis helleborine (L.) Crantz – Str. (Norrlin 1871: Unitsa.)

Goodyera repens (L.) R. Br. – R. (Norrlin 1871: Unitsa (Kullhem)).

Gymnadenia conopsea (L.) R. Br. – Stfq. (Norrlin 1871: *Fq.)

Hammarbya paludosa (L.) O. Kuntze – Str.

**,Listera cordata* (L.) R. Br. – Str. (Norrlin 1871: *Fq.)

Listera ovata (L.) R. Br. – Stfq. (Norrlin 1871: *Fq-fq.)

Malaxis monophyllos (L.) Sw. – Str: between Tarovskaya and Bogomolovskaya (Fagerström & Luther 1946); Fedotovo (Hultén 1971); Telyatnikovo (1987 Stoykina); Lichkov Isl. (1998 Kashtanov); Paleostrov Isl. (1999 Kravchenko & Kashtanov; Kravchenko et al. 2000 a); Syvatulka Bay (1999 Butsikhi, Kryshen & Timofeeva; Kravchenko et al. 2000 a); Kuzaranda (2004 Kravchenko & Kuznetsov, Piirainen); Stoykina (Markovskaya et al. 2007); V. Guba (1080 Kravchenko; Turastamozero (2012 Kravchenko; Kravchenko & Timofeeva 2013); between Podel'nikii and Zubovo (2012 Kravchenko); Poly (2013 Kravchenko). (Norrlin 1871: *P.) – RDB RF: 2, RDB RK: 3 (LC→NT)

*,**,Neottia nidus-avis* (L.) Rich. – Str: only in Kizhi Skerries: Boyarstchina and Zharnikovo (both 1986 Drozdova PZV); Telyatnikovo, Kushnavolok (Kuznetsov & Khokhlova 1994); B. Klim., Klimenty (1997 Kashtanov), Peryve Garnitsy (1998 Kashtanov), Gryznavolok Cape (1999 Kravchenko & Kashtanov), Kozelga (1999 Kravchenko & Kashtanov) and Vorobi

* Lemma minor L. – Sf. (Norrlin 1871: Shunga and fq in V. Guba.)

* Lemma trisulca L. – Str. (Norrlin 1871: V. Guba and fq in Shunga.)

* Butomus umbellatus L. – Str.

* Alisma plantago-aquatica L. – Fq. (Norrlin 1871: Fq.)

* Sagittaria natans Pall. – R: Shunga (1896 Poppius); Kosmozero, Padmozero and Putkozero (Shunga) (Klyukina 1965, no vouchers). Sagittaria sagittifolia L. – Str. (Norrlin 1871: Fq in V. Guba.)

* Elodea canadensis Michx. – Str.

* Hydrocharis morsus-ranae L. – Str. (Norrlin 1871: Dianova Gora (Simming); Unitza (Kull-hem); seen in several localities in the whole Zanonezhye Peninsula.)

* Stratiotes aloides L. – Str. (Norrlin 1871: Fq in the northern part; V. Guba.)

* Scheuchzeria palustris L. – R. (Norrlin 1871: *Sf.)

* Triglochin palustris L. – R. (Norrlin 1871: Fq.)

* Potamogeton alpinus Balb. – Fq. (Norrlin 1871: *Many localities.)

* Potamogeton berchtoldii Fieber – Str. (Norrlin 1871: *Sf; as P. pusillus L.)

* Potamogeton compressus L. – R. (Norrlin 1871: Fq in Shunga.)

* Potamogeton friesii Rupr. – R: only old records, all from Lake Putkozero (Shunga) (1888 Kihlman; Kihlman 1888, 1890; 1896 Poppius; Klyukina 1965). – RDB EF: 4, RDB RK: 3 (NT)

* Potamogeton gramineus L. – Fq. (Norrlin 1871: *Fq.)

* Potamogeton lucens L. – Fq. (Norrlin 1871: Fqq.)

* Potamogeton natans L. – Fq. (Norrlin 1871: *Fq.)

* Potamogeton obtusifolius Mert. & W. D. J. Koch – R (Norrlin 1871: Suslonov Navolok and V. Guba.)

* Potamogeton perfoliatus L. – Fq. (Norrlin 1871: *Fq.)

* Potamogeton praelongus Wulfén – R: Valgomozero, Lakes Kosmozero and Putkozero (Klyukina 1965; no vouchers); Kondozero (2012 Timofeeva).

* Potamogeton rusticus Wulfug. – R: only old records, all from Lake Putkozero (Shunga) (1870 Norrlin; Norrlin 1871 (fq in Shunga); 1888 Kihlman; Kihlman 1888, 1890; 1896 Poppius). – RDB EF: 3, RDB RK: 3 (NT)

* Caulinia flexilis Willd. (Najas flexilis (Willd.) Rostk. & W. L. E. Schmidt) – R: V. Guba (1870 Norrlin; Norrlin 1871; Günther 1880; 1943 Luther; Luther 1945; Fagerström & Luther 1946); Kizhi Isl., drifted (Kuznetsov 1993). The second record of Caulinia from Karelia is also from Kon, from Lake Pyalozero (Luther 1945). – RDB EF: 1; RDB RF: 2, RDB RK: 1 (CR) Sparganium angustifolium Michx. – Str. (Norrlin 1871: Shunga.)

* Sparganium emersum Rehmann – Str. (Norrlin 1871: V. Guba and fq in Shunga.)

* Sparganium gramineum Georgi – R: only old records; Kizhi area and B. Klim. (Hultén 1971).
Sparganium microcarpum (Neum.) Čelak. – **Rr.** V. Guba (1942/1943 Kujala, obs.); Kuzaran-da (Hultén 1971); Tolvuva (1993 Kravchenko); Myal’ Isl. (1999 Kravchenko & Kashtanov). (Norrlin 1871: Shunga, as S. ramosum Hud., nom. illeg. = S. erectum L., s. lat.)

Sparganium natans L. (S. minimum Wallr.) – **Sfq**. (Norrlin 1871: Fq.)

Typha angustifolia L. – **Rr.** Shunga (Günther 1880); V. Guba (Günther 1880; 1999 Timofeeva & Rudkovskaya; 2010 Kravchenko); Vegerouksa (2013 Kravchenko). (Norrlin 1871: Shunga.)

Juncus alpinoarticulatus Chaix – **Fq**. (Norrlin 1871: *Sfq-fq, as J. nodulosus = J. alpinoarticulatus s.lat.)

Juncus articulatus L. – **Sfq**. (Norrlin 1871: *Fqq.)

Juncus bufonius L. – **Str.** (Norrlin 1871: *Fqq.)

Juncus compressus Jacq. – **Sfq**. (Norrlin 1871: V. Guba and *fq in Shunga.)

Juncus conglomeratus L. – **R.**

Juncus effusus L. – **Str.**

Juncus filiformis L. – **Fq**. (Norrlin 1871: *Fqq.)

Juncus fischerianus Turcz. ex V. I. Krecz. (J. alpinoarticulatus subsp. fischerianus Turcz. ex V. I. Krecz.) Hämet-Ahti – **Rr.** Vorob’i (2007 Kravchenko).

Juncus nodulosus Wahlb. (J. alpinoarticulatus subsp. rariflorus (Hartm.) Holub) – **Str.** (Norrlin 1871, see under J. alpinoarticulatus.)

Juncus stygicus L. – **Rr.** (Norrlin 1871: Unitas.)

Luzula multiflora (Ehrh.) Lej. – **Fq**. (Norrlin 1871: *Fqq.)

Luzula pallescens Sw. – **Fq**. (Norrlin 1871: *Fqq.)

Luzula pilosa (L.). Willd. – **Fq**. (Norrlin 1871: *Fqq.)

Carex acuta L. – **Fq**. (Norrlin 1871: *Fqq.)

Carex appropinquata Schumach. – **Rr.** V. Guba (1942/1943 Kujala, obs.); B. Klim., Koselga (1999 Kravchenko & Kashtanov); Rechnoy Isl. (2004 Piirainen H, PTZ); Lipovitsy, Tambitsy and Tipinitsy (2013 Sytrjänen, obs.).

Carex aquatilis Wahlb. – **R.** V. Guba and Ust’-Yandoma (1942/1943 Kujala, obs.); observations from several points, but no vouchers.

Carex atherodes Spreng. – **Rr.** Kosmozero (1896 Poppius; Hultén 1971); erroneously reported for Kizhi Isl. (Kuznetsov 1993; see Kravchenko et al. 2000 a). – RDB EF: 3

Carex brunnescens (Pers.) Poir. – **Str.**

Carex buxbaumii Wahlb. – **Str.** (Norrlin 1871: Shunga.)

Carex canescens L. – **Fq**. (Norrlin 1871: *Fqq.)

Carex capillaris L. – **R.** (Norrlin 1871: B. Klim. (Simming).)

Carex cespitosa L. – **Fq**. (Norrlin 1871: *Fqq.)

Carex chordorrhiza L. f. – **Sfq**. (Norrlin 1871: *Fqq.)

Carex diandra Schrank – **Sfq**. (Norrlin 1871: *Fqq.)

Carex digitata L. – **Sfq**. (Norrlin 1871: V. Guba.)

Carex dioica L. – **Sfq**. (Norrlin 1871: Fqq.)

Carex disperma Dewey – **Str. (Norrlin 1871: *P.)

Carex echinata Murray – **Str.** (Norrlin 1871: *Fqq.)

Carex elongata L. – **Fq**. (Norrlin 1871: *Fqq.)

Carex ericetorum Pollich – **Rr.** only old records: Shunga and Vegerouksa (Hultén 1971).

Carex flava L. – **Fq**. (Norrlin 1871: Fqq.)

Carex globularis L. – **Str.** (Norrlin 1871: Fqq.)

Carex heleonastes L. f. – **Rr.** Karasozoero (1995 Kuznetsov); between Zharnikovo and Pod’e-elniki (1996 Kuznetsov; Kuznetsov 1997; Kuznetsov et al. 1999); B. Klim., Koselga (1999
Eriophorum vaginatum
Rhynchospora alba
Schoenoplectus lacustris
Agrostis canina
Scirpus sylvaticus
Agrostis capillaris
Eriophorum latifolium
Eriophorum gracile
Carex juncella
– RDB EF: 4
Carex lasiocarpa Ehrh. – Fq. (Norrlin 1871: *Fq.)
Carex leporina L. – Fq. (Norrlin 1871: *Fq.)
Carex limosa L. – Sfjq. (Norrlin 1871: *Fqq.)
Carex livida (Wahlenb.) Willd. – Rr: Unitas (1870 Norrlin: Norrlin 1871); Boyarstchina (1986 Stoykina; Kuznetsov 1993; Kuznetsov et al. 1999); Uzkie (2005 Antipin); Oyatevstchina and Turastamozero (2012 Kravchenko).
**Carex loliaceae L. – Str. (Norrlin 1871: *P-stfq.)
*Carex muricata L. – Str. V. Guba, Ustjanjoje (1943 Kujala, obs.; Hultén 1971; 2012 Kravchenko); numerous recent records from Kizhi Skerries (Kuznetsov 1997; Yudina 1999; Kravchenko et al. 2000 a; Morozova et al. 2010), also Tipinitsy (2004 Kravchenko & Piirainen H, PTZ). – RDB EF: 3, RDB RK: 3 (LC→NT)
Carex nigra (L.) Reichard. – Fq. (Norrlin 1871: *Fqq.)
Carex omskiana Meinsh. (C. elata All. subsp. omskiana (Meinsh.) Jalas) – Str. (Norrlin 1871: V. Guba and fq in Shunga.)
Carex pallescens L. – Fq. (Norrlin 1871: *Fq.)
Carex panicea L. – Str. (Norrlin 1871: *Fq.)
Carex pauciflora Lightf. – Str. (Norrlin 1871: *Fq.)
Carex paupercula (Norrlin 1871: *Fq.)
Carex rhyophypha Fisch., C. A. Mey. & Avé-Lall. – Str. (Norrlin 1871: *P.)
*Carex riparia Curtis – Rr: Tambitsy (2013 Syrjänen, obs.); very rare species in Karelia, where known only in 3 other localities. – RDB EF: 2, RDB RK: 3 (VU)
Carex rostrata Stokes – Fq. (Norrlin 1871: *Fqq.)
Carex scandinavica E. W. Davies (C. viridula Michx. var. pulchella (Lönnr.) B. Schmid) – Str. – RDB EF: 3
Carex serotina Mérat (C. viridula var. viridula) – P. (Norrlin 1871: Fq in Shunga; incl. C. scandinavica.)
Carex vaginata Tausch – Sfjq. (Norrlin 1871: Sfjq–fq.)
Carex vesicaria L. – Fq. (Norrlin 1871: *Fq.)
Eleocharis acicularis (L.) Roem. & Schult. – P. (Norrlin 1871: *Fq.)
Eleocharis manillata (H. Lindb.) H. Lindb. – Rr: Tolsvuya and Klim Nos – Okhisevskaya (Fagerström & Luther 1946); Vorob’i (2007 Kravchenko).
Eleocharis palustris (L.) R. Br. – Sfjq. (Norrlin 1871: *Fq.)
Eleocharis quinqueflora (Hartmann) O. Schwarz – Str. (Norrlin 1871: Fq in Shunga.)
Eleocharis uniglumis (Link.) Schultz. – Rr: Shunga (Hultén 1971). This is the only record from Lake Onega, but the species is known from Lake Vodlozero, east of Lake Onega.
Eriophorum angustifolium Honck. (E. polystachyon L. nom. rej.) – Sfjq. (Norrlin 1871: *Fqq.)
Eriophorum gracile W. D. J. Koch ex Roth – Str. (Norrlin 1871: Shunga.)
Eriophorum latifolium Hoppe – Str. (Norrlin 1871: Shunga, fq between Tolsvuya and V. Guba.)
Eriophorum vagatnatum L. – Sfjq. (Norrlin 1871: *Fqq.)
Rhynchospora alba (L.) Vahl – Str. (Norrlin 1871: between Kosmozero and V. Guba.)
Schoenoplectus lacustris (L.) Palla (Scirpus lacustris L.) – Fq. (Norrlin 1871: *Fqq.)
Scirpus sylvaticus L. – Fq. (Norrlin 1871: *Fqq–fq.)
Trichophorum alpinum (L.) Pers. – Str. (Norrlin 1871: *Fqq.)
Trichophorum cespitosum (L.) Hartm. – R.
Agrostis canina L. – Fq. (Norrlin 1871: *Fqq.)
Agrostis capillaris L. (A. tenius Sibth.). – Fq. (Norrlin 1871: *Fqq.)
Agrostis gigantea Roth – \(\text{Rr} \): according to Kuznetsov (1993) everywhere in Kizhi Skerries, the frequency obviously overestimated; V. Guba (2012 Kravchenko).

Agrostis stolonifera L. – \(\text{P} \). (Norrlin 1871: shores of Lake Onega.)

Alopecurus aequalis Sobol. – \(\text{Fq} \). (Norrlin 1871: *Fq.)

Alopecurus geniculatus L. – \(\text{Fq} \). (Norrlin 1871: *Stfq.)

*Alopecurus pratensis L. – \(\text{Fq} \).

Anthoxanthum odoratum L. – \(\text{Fq} \). (Norrlin 1871: *Fqq.)

Avenella flexuosa (L.) Drejer (Deschampsia flexuosa (L.) Trin., Lerchenfeldia flexuosa (L.)) – \(\text{Fq} \). (Norrlin 1871: *Fqq.)

Alopecurus pratensis L. – \(\text{Fq} \).

Briza media L. – \(\text{Str} \).

Bromopsis inermis (Leyss.) Holub (Bromus inermis Leyss.) – \(\text{Str} \).

Bromus arvensis L. – Only old records: Lammaspuro (1943 Kujala, obs.); Tolvuya (Fagerström & Luther 1946).

Bromus secalinus L. – Only old records: Sennaya Guba (Bezais 1911); Tolvuya and Klim Nos (Fagerström & Luther 1946).

Calamagrostis arundinacea (L.) Roth – \(\text{Fq} \). (Norrlin 1871: V. Guba.)

Calamagrostis canescens (Weber) Roth – \(\text{Fq} \). (Norrlin 1871: *Fq–*fqq.)

Calamagrostis epigeios (L.) Roth – \(\text{Fq} \). (Norrlin 1871: *Fqq.)

Calamagrostis neglecta (Ehrh.) G. Gaertn., B. Mey. & Scherb. – \(\text{Fq} \). (Norrlin 1871: *Fqq.)

Calamagrostis phragmitoides Hartm. (C. purpurea (Trin.) Trin. subsp. phragmitoides (C. Hartm.) Tzvel.) – \(\text{Fq} \). (Norrlin 1871: V. Guba.)

Dactylis glomerata L. – \(\text{Fq} \). (Norrlin 1871: *Fq in Shunga and V. Guba.)

Deschampsia cespitosa (L.) P. Beauv. – \(\text{Fq} \). (Norrlin 1871: *Fqq.)

Elymus caninus (L.) L. (Agropyron caninum (L.) P. Beauv.) – \(\text{Fq} \). (Norrlin 1871: *Fq in Shunga and V. Guba.)

Elytrigia repens (L.) Nevski (Agropyron repens (L.) P. Beauv.) – \(\text{Fq} \). (Norrlin 1871: *Fq.)

Festuca arenaria Osbeck – \(\text{Rr} \): Megostrov (2004 Kravchenko); V. Guba (2010 Kravchenko).

Festuca ovina L. – \(\text{Fq} \). (Norrlin 1871: *Fq.)

Festuca rubra L. – \(\text{Fq} \). (Norrlin 1871: *Fqq.)

Glyceria fluitans (L.) R. Br. – \(\text{P} \). (Norrlin 1871: *Fq.)

Glyceria lithuanica (Górski) Górski – \(\text{Rr} \): V. Guba (1943 Kujala, obs.); Turastamozero (1989 Timofeeva & Rudkovskaya); Lipovitsy and Uzkaya Salma (2013 Kravchenko); Oyatevitsa, Polya, Tambitsy, Tipinitsy – Kaskoselga and Uzkiy Salmy (all 2013 Syrjänen, obs.).

Glyceria maxima (C. Hartm.) Holmb. – \(\text{Rr} \): Ust’-Yandoma (1943 Kujala, obs.); Shunga (Hultén 1971); Kuzaranda (Hultén 1971); Orozh Isl. (1999 Kravchenko & Kashtanov); V. Guba (2012 Kravchenko). (Norrlin 1871: Unitsa.)

Glyceria notata Chevall. – \(\text{P} \).

**Glyceria lithuanica (Górska) Górski – \(\text{R} \): V. Guba (1943 Kujala, obs.); Turastamozero (1989 Timofeeva & Rudkovskaya); Lipovitsy and Uzkaya Salma (2013 Kravchenko); Oyatevitsa, Polya, Tambitsy, Tipinitsy – Kaskoselga and Uzkiy Salmy (all 2013 Syrjänen, obs.).

Hierochloë arctica (C. Presl) Holmb. – \(\text{Rr} \): Ust’-Yandoma (1943 Kujala, obs.); Shunga (Hultén 1971); Kuzaranda (Hultén 1971); Orozh Isl. (1999 Kravchenko & Kashtanov); V. Guba (2012 Kravchenko). (Norrlin 1871: Unitsa.)

Glyceria notata Chevall. – \(\text{P} \).

Helictotrichon pubescens (Huds.) Pilg. (Avenula pubescens (Huds.) Dumort.) – \(\text{Rr} \): B. Klim., Kurgenitzy (2007 Kravchenko); Verkhnee Myagrozero (2012 Znamenskiy, obs.).

Hierochloë arctica C. Presl (H. hirta (Schrank) Borb. subsp. arctica (C. Presl) G. Weim.) – \(\text{Fq} \). (Norrlin 1871: *P, as H. odorata (L.) P. Beauv.)

Leymus arenarius (L.) Hochst. – \(\text{Rr} \): Shunga and Tolvuya (Hultén 1971). Rather common in eastern and southern part of the lake and on Hedostrov Island east of Kuzaranda, but very rare in Zaonezhye, may be because of lack of suitable sandy shores.
Lolium perenne L. – Only old records: Kuzaranda (Günther 1880); V. Guba, Lammaspuro and Ust’-Yandoma, abundant in fields, probably cultivated (1942/1943 Kujala, obs.); Tolvuya and Klim Nos (Fagerström & Luther 1946).

Melica nutans L. – *Fq.* (Norrlin 1871: *Fqq.*)

Milium effusum L. – *Fq.* (Norrlin 1871: V. Guba.)

Molinia caerulea (L.) Moench – *P.* (Norrlin 1871: *Fq* in Shunga.)

Nardus stricta L. – *P.* (Norrlin 1871: *Fqq.*)

Phalaroides arundinacea (L.) Rauschert (*Phalaris arundinacea* L.) – *Fq.* (Norrlin 1871: *Stfq–fq.*)

Phleum pratense L. – *Fq.* (Norrlin 1871: *Fqq.*)

Phragmites australis (Cav.) Trin. ex Steud. – *Fq.* (Norrlin 1871: *Fqq.*)

Poa alpina L. – *R.* (Norrlin 1871: Azhepnavolok and Shunga.)

Poa angustifolia L. – *Str.*

Poa annua L. – *Fq.* (Norrlin 1871: *Fqq.*)

Poa compressa L. – *Str.*

Poa humilis Hoffm. (*P. pratensis* subsp. *irrigata* (Lindlm.) H. Lindb., *P. subcaerulea* Smith, *P. pratensis* subsp. *subcaerulea* (Sm.) Hiitonen) – *R.*

Poa nemoralis L. – *P.*

Poa palustris L. – *Fq.* (Norrlin 1871: *Stfq;* incl. *P. nemoralis.*)

Poa pratensis L. – *Fq.* (Norrlin 1871: *Fqq;* probably incl. *P. angustifolia.*)

Poa remotae Forsel. – *Rr:* V. Guba (1942/1943 Kujala, obs.); Tambitsy, Varnavolok (2004 Kravchenko).

Poa trivialis L. – *Stfq.* (Norrlin 1871: *Fqq.*)

Schedonorus pratensis (Huds.) P. Beauv. (*Festuca pratensis* Huds.) – *Fq.* (Norrlin 1871: Shunga; as *Festuca elatior* L.)

Scolochloa festucacea (Willd.) Link – *Rr:* V. Guba (Luther 1945; Fagerström & Luther 1946); B. Klim. area (Hultén 1971); Kizhi isl. (1994 Kuznetsov).

Secale cereale L. – Only old records: Klim Nos (Fagerström & Luther 1946).

Dubious or erroneously recorded species

Nymphaea tetragona Georgi (Klyukina 1965)

Rumex confertus Willd. (Bezais 1911)

Gentiana pneumonanthe L. (Bezais 1911)

Carduus nutans L. (Bezais 1911)

Lactuca tatarica (L.) C. A. Mey. (Bezais 1911)

Phleum alpinum L. (Bezais 1911; Kuznetsov 1993)
REFERENCES

Bezays, E.K. 1911. Безайс Э.К. Отчет о ботаническом исследовании берегов Онежского озера от Петрозаводска до Повенца [Report about botanical research of banks of Lake Onezhskoe from Petroza-

Margarita Fadeeva and Alexei Kravchenko in moist herb-rich forest (spruce swamp) near Lipovitsy village (Photo Jevgeni Jakovlev).
Abstract

The bryophyte flora of Zaonezhye Peninsula consists of 235 species of mosses and 64 hepatics. The proportion of red listed and indicator species is very high in the area. The establishment of nature monuments and a strictly protected area on Zaonezhye Peninsula will contribute to the conservation of a number of rare Red Data Book species and valuable forest indicator species, growing on forests with pristine and old-growth characteristics, swamp forests and black alder forests, nutrient-rich mesotrophic and eutrophic mires, as well as calcicolous cliffs and rock outcrops.

Introduction

Floristically, Zaonezhye Peninsula is of great interest. Its distinctive flora and vegetation are due to a distinctive microclimate, different bedrocks and nutrient-rich, sodden lithogenic shungite soils. Shungite (name is according to village Shunga) is black carboniferous rock type which is typical for Zaonezhye. Due to favourable growth conditions, species of southern taiga forests occur here in a middle taiga landscape. According to the biogeographic zonation of Eastern Fennoscandia (Mela & Cajander 1906), the study area is located in the eastern part of the province of Karelia onegensis, or the Zaonezhye floristic province (Ramenskaya 1960). The Zaonezhye floristic province is the second most diverse province in Karelia for mosses after the Priladozhye floristic province.

Despite the proximity of Zaonezhye Peninsula to Petrozavodsk and a well-developed road network, the peninsula, especially its western and northeastern parts, has been poorly studied bryofloristically until recently. For a long time the first moss samples, collected by A.K. Cajander and J.I. Lindroth in the vicinity of Sennaya Guba and on Kizhi Island in 1898, were stored in the cryptogamous plant herbarium at the
Museum of Botany, Helsinki University. These samples have been published only recently (Ahti & Boychuk 2006). In 1921, L.I. Savich-Lyubitskaya collected mosses near the village of Shunga. Between 1987 and 1996, moss samples from Kizhi Island were collected by Oleg Kuznetsov, Anatoly Maksimov, Tatjana Brazovskaya and Natalya Stoikina who studied mire flora and vegetation; by V.A. Bakalin (Bakalin et al. 1999) who undertook a special study of moss species from Kizhi Islands and a part of Bolshoi Klinemetsky Isl.; and by Margarita Boychuk and Jyevgenia Markovskaya who studied mosses on the islands of Kizhi Nature Reserve (Boychuk & Markovskaya 2005). The moss flora of Zaonezhye Peninsula (villages Shunga, Tolvuya, Lisitsino and Kosmozero) and the planned Zaonezhye Nature Reserve was studied by Anatoly Maksimov and Tatjana Maksimova in 2000 and by Anatoly Maksimov in 2001 and 2012. Moss samples, collected by Oleg Kuznetsov in 1999 and by Stanislav Kutenkov in 2012 from mires in the study area, have been used for compiling a list of moss species growing in the nature reserve. A list of moss species from Zaonezhye Nature Reserve has been published recently (Maksimov, 2013). This publication contains a list of new mosses from Zaonezhye Peninsula based for the most part on the results of our studies. By 2013, 221 moss species had been reported from Zaonezhye Peninsula (Bakalin et al. 1999; Kuznetsov et al. 2000; Boychuk & Markovskaya 2005; Ahti & Boychuk 2006; Maksimov 2013), although a consolidated list of moss species from the peninsula has not yet been published.

In 2013, the Finnish scientists Kimmo Syrjänen and Olli Manninen continued the study of bryophytes from southern and southwestern Zaonezhye Peninsula. They collected and analyzed approximately 200 bryophyte samples, which are stored in the Turku University herbarium (TUR). Anatoly Maksimov re-analyzed the moss samples from Zaonezhye Peninsula, which are stored in the Karelian Research Centre herbarium (PTZ). In 2013, observations of certain indicator species of bryophytes like Neckera pennata were also collected by Jyri Mikkola, Olli-Pekka Tikkanen and Timo Kuuluvainen.

As a result, four new moss species, namely Eurhynchium angustirete, Plagiommium affine, Schistidium platyphyllum and Tayloria lingulata, and one liverwort, Anastrophyl- lum michauxii, have been reported from the Zaonezhye floristic province. Eurhynchium angustirete, Plagiommium affine and Tayloria lingulata have been included in the Red Data Book of the Republic of Karelia (2007).

Thirteen moss species (Dicranum fragilifolium, Herzogiella seligeri, Mnium lycoperoides, Myurella julacea, Neckera pennata, Plagiommium drummondii, Plagiothecium latebricola, Polytrichastrum pallidisetum, Rhizomnium magnifolium, Schistidium platyphyllum, Sphagnum quinquefarium, S. rubellum and Tayloria lingulata) have been found for the first time on Zaonezhye Peninsula. Thus, 235 moss species, making up 65% of the moss flora in the Zaonezhye floristic province (363 species), are now known from Zaonezhye Peninsula (see List of species). A preliminary list of hepatics includes 64 species.

Rare and valuable species. Interesting Bryophyte species include Brachythecium rutabulum, Calypogea suecica, Encalypta brevicollia, Eurhynchium angustirete, Hamatocaulis vernicosus, Harpanthus scutatus, Homomallium incurvatum, Hylocomium pyrenaicum, Isothecium alopecuroides, Jamesoniella autumnalis, Leucodon sciuroides, Liochlaena lanceolata, Lophozia ascendens, Neckera besseri, N. pennata, Orthotrichum gymnostomum, Oxystegus tenuirostris, Plagiommium affine, P. drummondii, Plagiothecium latebricola, Platygyrium repens, Pylaisia selwynii, Scapania apiculata, Schistidium pulchrum, Sphagnum auriculatum, S. pulchrum, S. lindbergii and Trichocolea tomentella. Fourteen of them, namely Calypogea suecica, Eurhynchium angustirete, Harpanthus scutatus, Jamesoniella autumnalis, Lophozia ascendens, Neckera besseri, N. pennata, Orthotrichum gymnostomum, Plagiommium affine, P. drummondii, Scapania apiculata, Sphagnum auriculatum, Tayloria
lingulata and Trichocolea tomentella, are listed as very rare species in the Red Data Book of Karelia (2007). Some species from Zaonezhye Peninsula, e.g. Pylaisia selwynii and Hamatocaulis vernicosus, are included in the Red Data Book of European Bryophytes (Red., 1995). Hamatocaulis vernicosus, Herzogiella turfacea and Plagiomnium drummondii are also listed in the EU Habitats Directive.

Indicator species. Overall 47 bryophyte species, which according to Andersson et al. (2009) are considered indicator species of valuable forest habitats, are found from Zaonezhye Peninsula. This is a remarkably high number of indicator bryophytes. The list of indicator species includes many of the above-mentioned red-listed species: Anastrophyllum michauxii, Anomodon attenuatus, A. longifolius, Barbilophozia lycopodioides, Calypogea suecica, Crossocalyx hellerianus, Dicranum drummondii, D. flagellare, D. fragilifolium, Euryhynchium argustrete, Harpanthus scutatus, Herzogiella seligeri, Homalia trichomanoides, Hylcomiastrum pyrenaicum, H. umbratum, Jamesoniella autumnalis, Leucodon sciuroides, Liochlaena lanceolata, Lophozia ascendens, Lophozia longigifora, Mnium stellare, Neckera complanata, N. pennata, Orthocaulis attenuatus, Orthotrichum gymnostenum, O. obtusifolium, Oxyrhynchium hians, Philonotis spp., Pogonatum asplenioideae, Plagiomnium affine, P. drummondii, Plagiothecium latebricola, Platygryium repens, Pseudobryum cincidioides, Pterigynandrum filiforme, Pylaisia selwynii, Riccardia latifrons, R. palmata, Scapania apiculata, Schistostega pennata, Sphagnum quinquefarium, Sphagnum wulfianum, Sphenolobus saxicola, Tayloria lingulata, Trichocolea tomentella and Tritomaria quinquedentata.

The most valuable and interesting habitats and sites from the perspective of bryophyte species diversity include old-growth forests, alder swamps, mesotrophic and eutrophic mires and rich-fens as well as carboniferous rock outcrops.

Old-growth spruce and mixed forests. Mesic, herb-rich forests with pristine and old-growth characteristics are very important for bryophyte biodiversity on Zaonezhye Peninsula. Often these forests create a long continuum of coarse woody debris and moist microclimates. Windfallen logs include mainly spruce but also aspen and sometimes pine. These forests are mainly located on heatland sites, remote from old villages, although they are sometimes found also on mire margins and along brooks and rivulets. Epixylic liverworts favour logs where the bark has fallen off and the surface is slightly softened. The diversity of epixylic liverworts typical for pristine forests is high in the forests of Zaonezhye. The frequency of indicator species such as Crossocalyx hellerianus, Lophozia longigifora and Riccardia spp. as well as red-listed Calypogea suecica varies from common to very common in these forests. For example, there are 160 observations of indicator species Crossocalyx hellerianus (syn. Anastrophyllum hellerianum) and red-listed Calypogea suecica were collected from 21 sites in 2013. The early epixylic colonizer, Lophozia ciliata is common in Zaonezhye. More demanding epixylics such as red-listed Lophozia ascendens and Jamesoniella autumnalis are found in several stands, whereas both Scapania apiculata and Anastrophyllum michauxii seem to be rather rare. In the Zaonezhye population, female plants of Jamesoniella autumnalis also bear perianths, which indicates optimal conditions for growth. According to Damsholt (2002), perianths of Jamesoniella autumnalis are rare in Fennoscandia.
Swamp forests and other wet forests. The red-listed *Harpanthus scutatus* and the indicator species *Liochlaena lanceolata* grow in more moist and wet forests with the presence of black alder (*Alnus glutinosa*). Also, *Plagiothecium latebricola* is found on the stumps and at the bases of old alder trees in swamp forests and moist forests along streams. *Trichocolea tomentella* occurs where the forest bottom is moist and affected by groundwater. It seems to grow occasionally in herb-rich swamp forests affected by springs. On the forest floor of moist spruce and swamp forests, *Rhytidiadelphus subpinnatus* is commonly found, sometimes together with *Hylocomiastrum umbratum* and more rarely with *Hylocomiastrum pyrenaicum*. The last two species are considered indicator species of valuable forest habitats.
Forests with large aspen trees. In addition to old-growth mixed forests, large aspen individuals are also present in the late successional stages of secondary deciduous forests. These forests are common on rich soils close to abandoned villages of southern Zaonezhye Peninsula. Indicator species *Neckera pennata* is relatively common and a typical epiphyte of large aspens. In sheltered conditions it forms large mats along trunks. In 2013, *Neckera pennata* was observed in 120 locations. Also *Orthotrichum obtusifolium* is a common indicator species, growing on Zaonezhye aspens. *Orthotrichum gymnostomum* is mainly found on aspen trunks in old-growth forests, although it also grows in secondary forests. It is easily overlooked as it typically grows relatively high up on the trunk and is therefore mainly found on recently fallen trees (either by wind or beavers). The same is true of *Pylaisia selwynii*, which is more rare than the closely related *Pylaisia polyantha* that is common on aspen trunks.

![Fig. 3. Base of aspen with Neckera pennata, etc.](Photo Kimmo Syrjänen)

Deciduous and mixed herb-rich forests have a diverse bryophyte flora at the bases of aspens and on the forest floor. Both *Eurhynchium angustirete* and *Plagiomnium drummondii* grow in these habitats. Also indicator species *Homalia trichomanoides* and *Isothecium alopecuroides* can be found at the base of aspen trunks. *Plagiomnium medium* and *Sciuro-hypnum curtum* are very common on the forest floor. In addition to many rare liverworts, mosses *Herzogiella seligeri* and *Herzogiella turacea* grow on decaying aspen trunks. The latter is common also in swamp forests. Rare *Plagiomnium affine* has been found at the base of old *Ulmus glabra* trunk in one deciduous stand.

Bedrock exposures with carbonate rich rocks occur in various places in the area. These outcrops host a rich flora of bryophytes that prefer calcareous substrata. Species include *Tortella tortuosa*, *Distichium capillaceum* and *Ditrichum flexicaule*, which are typical indicators of limestone rocks. Especially worth mentioning are the southern and southeastern slopes of Mount Sypun, where there are rare species such as *Encalypta brevicolla*, *Leucodon sciuroides*, *Neckera besseri*, *N. complanata* and *Oxystegus tenuirostris*. Also the bedrock exposures on the south- and southwest-facing slopes of the southern end of Svyatukha Bay are important. The Red Data Book species *Orthotrichum gymnostomum* and rare nemoral species, including *Anomodon attenuatus*, *Brachythecium rutabulum*, *Homalia trichomanoides*, *Isothecium alopecuroides*, *I. myosuroides*, *Platygyrium repens* and *Pseudoleskeella papillosa* have been encountered here.
Fig. 4. Spring rich fen close to Kaskoselga with Carex appropinquata, Saxifraga hirculus and Hamatocaulis vernicosus etc. (Photo Kimmo Syrjänen).

Valuable mires and fens. Certain mires near the lakes Karasozero and Koibozero, as well as Kalgubskoe Mire in the vicinity of Lambasruchei, are of great scientific interest. The mosses *Sphagnum pulchrum*, *S. aongstroemii* and *S. lindbergii*, which are uncommon to Zaonezhye, have been found here. These mires also host a number of calciphilous mosses that rely on diverse ground nutrients (Dyachkova et al. 1993; Kuznetsov et al. 2000). In the southern part of the peninsula, there are also several fens that are valuable for conservation, including the fens southwest and northwest of the village of Tambitsy. These fens have a rich flora of bryophytes and vascular plants, including *Hamatocaulis vernicosus*.

Conclusions

The moss flora of the Zaonezhye Peninsula generally comprises the basic species that grow in Zaonezhye, where impoverished south-taiga forests occur in mid-taiga landscapes. The moss flora consists of 235 species that account for about 65% of the flora in the Zaonezhye floristic province. Altogether 14 bryophyte species of Karelian Red List have been found, but the amount of indicator species of valuable forest habitat is much higher: 47 mosses and liverworts. The establishment of a strictly protected area on the Zaonezhye Peninsula will contribute to the conservation of the rare Red Data Book species, such as *Calypogeia suecica*, *Eurhynchium angustirete*, *Harpantus scutatus*, *Janesomiella autumnalis*, *Lophozia ascendens*, *Neckera besseri*, *N. pennata*, *Orthotorichum gymnostomum*, *Plagiommnium affine*, *P. drummondii*, *Scapania apiculata*, *Sphagnum auriculatum*, *Tayloria lingulata* and *Trichocolea tomentella*, and the nemoral moss species *Anomodon attenuatus*, *Brachythecium rutabulum*, *Leucodon sciuroides*, *Neckera complanata*, *Platygyrium repense* and *Pylaisia selwynii*, most bryophytes, which grow on nutrient-rich eutrophic mires, and bryophyte indicators of old-growth forests.
Zaonezhye has long history of traditional land use and selective cutting of forests, and also recently some forests are used in intensive forestry. However, large pristine-like stands with continuity of dead wood (both windfalls and standing trees) and large deciduous trees e.g. aspen are available in many places. Diverse bryoflora of natural forests and mires is present in the peninsula. In addition to coniferous forests Zaonezhye has also many other valuable forest habitat types and mires with intact hydrology those support diverse bryophyte species composition. For example, swamp forests with black alder are such sites as well as deciduous late successional herb-rich stands. Larger pristine-like coniferous and herb rich mixed forest stands can be connected to each other by careful planning of conservation areas. Forests can also be connected to villages with shoreline forests, mires, swamp forests and waterways. Zaonezhye provides unique possibility to make connected network of conservation areas. This green infrastructure that connects conservation areas and ancient villages would also support cultural and nature tourism around Kizhi island as well as multiple forest use by local inhabitants.

REFERENCES

Reports of the Finnish Environment Institute 40 | 2014 199
Appendix

List of mosses from Zaonezhye Peninsula

Nomenclature according to Ignatov et al. (2006), with some changes.

Fam. Sphagnaceae

Sphagnum angustifolium (C. E. O. Jensen ex Russow) C. E. O. Jensen
S. aongstroemii C. Hartm.
S. auriculatum Schimp.
S. balticum (Russow) C. E. O. Jensen
S. capillifolium (Ehrh.) Hedw.
S. centrale C. E. O. Jensen
S. compactum Lam. & DC.
S. contortum Schultz
S. cuspidatum Ehrh. ex Hoffm.
S. fallax (H. Klinggr.) H. Klinggr.
S. fimbriatum Wilson
S. flexuosum Dozy & Molk.
S. fuscum (Schimp.) H. Klinggr.
S. giergensohnii Russow
S. inundatum Russow
S. jensenii H. Lindb.
S. lindbergii Schimp.
S. magellanicum Brid.
S. majus (Russow) C. E. O. Jensen
S. obtusum Warnst.
S. papillosum Lindb.
S. platyphyllum (Lindb. ex Braithw.) Warnst.
S. pulchrum (Lindb. ex Braithw.) Warnst.
S. quinquefarium (Lindb. ex Braithw.) Warnst.
S. riparium Ångstr.
S. rubellum Wilson
S. russowii Warnst.
S. squarrosum Crome
S. subfulvum Sjörs
S. subsecundum Nees
S. teres (Schimp.) Ångstr.
S. warnstorfii Russow
S. wulfianum Girg.

Fam. Andreaeaceae

Andreaea rupestris Hedw.

Fam. Polytrichaceae

Atrichum tenellum (Röhl.) Bruch et al.
A. undulatum (Hedw.) P. Beauv.
Pogonatum urnigerum (Hedw.) P. Beauv.
Polytrichastrum longisetum (Sw. ex Brid.) G. L. Smith
P. pallidisetum (Funck) G. L. Smith
Polytrichum commune Hedw.
P. juniperinum Hedw.
P. piliferum Hedw.
P. strictum Brid.

Fam. Tetraphidaceae
Tetraphis pellucida Hedw.

Fam. Funariaceae
Funaria hygrometrica Hedw.

Fam. Encalyptaceae
Encalypta brevicolla (Bruch et al.) Ångstr.
E. ciliata Hedw.
E. rhaptocarpa Schwägr.
E. vulgaris Hedw.

Fam. Grimmiiaceae
Bucklandiella microcarpa (Hedw.) Bednarek-Ochyra & Ochyra
Grimmia longirostris Hook.
G. muchlenbeckii Schimp.
Niphotrichum canescens (Hedw.) Bednarek-Ochyra & Ochyra
Schistidium apocarpum (Hedw.) Bruch et al.
S. dupretii (Thér.) W. A. Weber
S. papillosum Culm.
S. platyphyllum (Mitt.) H. Perss.
S. pulchrum H. H. Blom
S. rivulare (Brid.) Podp.

Fam. Dicranaceae
Dicranella cerviculata (Hedw.) Schimp.
D. heteromalla (Hedw.) Schimp.
D. schreberiana (Hedw.) Dixon
Dicranum bonjeanii De Not.
D. brevifolium (Lindb.) Lindb.
D. drummondii Müll. Hal.
D. flagellare Hedw.
D. flexicaule Brid.
D. fragilifolium Lindb.
D. fuscescens Turner
D. majus Turner
D. montanum Hedw.
D. polysetum Sw.
D. scoparium Hedw.
D. undulatum Schrad. ex Brid.
Paraleucobryum longifolium (Hedw.) Loeske

Fam. Rhabdoweisiaceae
Amphidium lapponicum (Hedw.) Schimp.
Cnestrum schisti (F. Weber & D. Mohr) I. Hagen
Cynodontium strumiferum (Hedw.) Lindb.
C. tenellum (Schimp.) Limpr.
Hymenoloma crispulum (Hedw.) Ochyra

Fam. Ditrichaceae
Ceratodon purpureus (Hedw.) Brid.
Distichium capillaceum (Hedw.) Bruch et al.
Ditrichium flexicaule (Schwägr.) Hampe
Saelania glaucescens (Hedw.) Broth.

Fam. Pottiaceae
Barbula convoluta Hedw.
Bryoerythrophyllum recurviostrum (Hedw.) P.C. Chen
Didymodon ferrugineus (Schimp. ex Besch.) M.O. Hill
D. rigidulus Hedw.
Oxystegus tenuirostris (Hook. & Tayl.) A. J. E. Smith
Syntrichia ruralis (Hedw.) F. Weber & D. Mohr
Tortella fragilis (Hook. & Wilson) Limpr.
T. tortuosa (Hedw.) Schimp.

Fam. Fissidentaceae
Fissidens adianthoides Hedw.
F. osmundoides Hedw.

Fam. Schistostegaceae
Schistostega pennata (Hedw.) F. Weber & D. Mohr

Fam. Meesiaceae
Leptobryum pyriforme (Hedw.) Wilson
Meesia triquetra (Jolycl.) Ångstr.
Paludella squarrosa (Hedw.) Brid.

Fam. Splachnaceae
Splachnum luteum Hedw.
S. rubrum Hedw.
Tayloria lingulata (Dicks.) Lindb.
Tetraplodon angustatus (Hedw.) Bruch et al.

Fam. Orthotrichaceae
Orthotrichum gymnostomum Bruch ex Brid.
O. obtusifolium Brid.
O. rupestre Schleich. ex Schwägr.
O. speciosum Nees

Fam. Hedwigiaceae
Hedwigia ciliata (Hedw.) P. Beauv.

Fam. Bryaceae
Bryum argenteum Hedw.
B. bimum (Schreb.) Turner
B. caespiticium Hedw.
B. capillare Hedw.
B. creberrimum Tayl.
B. lonchocalon Müll. Hal.
B. moravicum Podp.
B. pallescens Schleich. ex Schwägr.
B. pseudotriquetrum (Hedw.) P. Gaertn., B. Mey. & Schreb.
B. weigelii Spreng.
Rhodobryum roseum (Hedw.) Limpr.

Fam. Mielichhoferiaceae
Pohlia bulbifera (Warnst.) Warnst.
P. cruda (Hedw.) Lindb.
P. nutans (Hedw.) Lindb.

Fam. Mniaceae
Cinclidium stygium Sw.
Mnium lycopodioides Schwägr.
M. stellare Hedw.
Plagiothecium affine (Bland.) T. J. Kop.
P. cuspidatum (Hedw.) T. J. Kop.
P. drummondii (Bruch & Schimp.) T.J. Kop.
Plagiothecium elatum (B.S.G.) T.J. Kop.
P. ellipticum (Brid.) T. J. Kop.
P. medium (Bruch et al.) T. J. Kop.
Pseudobryum cinchidioides (Huebener) T. J. Kop.
Rhizomnium magnifolium (Horik.) T.J.Kop.
R. pseudopunctatum (Bruch & Schimp.) T. J. Kop.
R. punctatum (Hedw.) T. J. Kop.
Rhodobryum roseum (Hedw.) Limpr.

Fam. Bartramiaceae
Bartramia pomiformis Hedw.
Philonotis fontana (Hedw.) Brid.

Fam. Aulacomiaceae
Aulacomnium palustre (Hedw.) Schwägr.

Fam. Fontinalaceae
Dichelyma falcatum (Hedw.) Myrin
Fontinalis antipyretica Hedw.

Fam. Plagiotheciaceae
Herzogiella seligeri (Brid.) Z. Iwats.
Herzogiella turfacea (Lindb.) Z. Iwats.
Isopterygiopsis pulchella (Hedw.) Z. Iwats.
Myurella julacea (Schwägr.) Schimp.
Plagiothecium caviolium (Brid.) Z. Iwats.
P. denticulatum (Hedw.) Bruch et al.
P. laetum Bruch et al.
P. latebricola Bruch et al.
P. piliferum (Sw.) Bruch et al.

Fam. Pterigynandraceae
Pterigynandrum filiforme Hedw.

Fam. Leucodontaceae
Leucodon sciuroides (Hedw.) Schwägr.

Fam. Hypnaceae
Hypnum cupressiforme Hedw.

Fam. Pylaisiadelphaceae
Platygyrium repens (Brid.) Bruch et al.

Fam. Pseudoleskeaceae
Lescuraea incurvata (Hedw.) Lawt.

Fam. Anomodontaceae
Anomodon attenuatus (Hedw.) Huebener
A. longifolius (Brid.) Hartm.

Fam. Heterocladiaceae
Heterocladium dimorphum (Brid.) Bruch et al.

Fam. Neckeraeae
Homalia trichomanoides (Hedw.) Bruch et al.
Neckera besseri (Lobarz.) Jur.
N. complanata (Hedw.) Huebener
N. oligocarpa Bruch
N. pennata Hedw.

Fam. Climaciaceae
Climacium dendroides (Hedw.) F. Weber & D. Mohr

Fam. Hylocomiaceae
Hylocomiastrum pyrenaicum (Spruce) M. Fleisch.
H. umbratum (Hedw.) M. Fleisch.
Hylocomium splendens (Hedw.) Bruch et al.
Pleurozium schreberi (Brid.) Mitt.
Rhytidiadelphus squarrosus (Hedw.) Warnst.
R. subpinnatus (Lindb.) T. J. Kop.
R. triquetrus (Hedw.) Warnst.

Fam. Lembophyllaceae
Isothecium alopecuroides (Lam. ex Dubois) Isov.
I. myosuroides Brid.

Fam. Brachytheciaceae
Brachythecium distichum (Hedw.) Ignatov & Huttunen
B. albicans (Hedw.) Bruch et al.
B. erythrorhizon Bruch et al.
B. mildeanum (Schimp.) Schimp.
B. rivulare Bruch et al.
B. rutabulum (Hedw.) Bruch et al.
B. salebosum (F. Weber & D. Mohr) Bruch et al.

Fam. Eurhynchiastraceae
Eurhynchiastrum pulchellum (Hedw.) Ignatov & Huttunen
Eurhynchium angustirete (Broth.) T.J. Kop.

Fam. Calliergonaceae
Calliergon cordifolium (Hedw.) Kindb.
C. giganteum (Schimp.) Kindb.
C. megalophyllum Mikut.
C. richardsonii (Mitt.) Kindb.
Loesekypnum badium (Hartm.) H. K. G. Paul
Straminergon stramineum (Dicks. ex Brid.) Hedenäs

Warnstorffia exannulata (Bruch et al.) Loeske

Fam. Scorpiidiaceae
Hamatocaulis vernicosus (Mitt.) Hedenäs
Hygrohypnella ochracea (Turner ex Wilson) Ignatov & Ignatova
Sanionia uncinata (Hedw.) Loeske
Scorpidium cossonii (Schimp.) Hedenäs
S. revolvens (Sw. ex anon.) Rubers
S. scorpioides (Hedw.) Limpr.

Fam. Pylaisiaceae
Breidleria pratensis (W. D. J. Koch ex Spruce) Loeske
Calliergonella cuspidata (Hedw.) Loeske
C. lindbergii (Mitt.) Hedenäs
Homomallium incurvatum (Schrad. ex Brid.) Loeske
Ptilium crista-castrensis (Hedw.) De Not.
Pylaisia polyantha (Hedw.) Bruch et al.
P. selwynii Kindb.
Stereodon pallescens (Hedw.) Mitt.

Fam. Rhytidiaceae
Rhytidium rugosum (Hedw.) Kindb.

Fam. Pseudoleskeellaceae
Pseudoleskeella nervosa (Brid.) Nyh.
P. papillosa (Lindb.) Kindb.
P. tectorum (Funck ex Brid.) Kindb.

Fam. Thuidiaceae
Abietinella abietina (Hedw.) M. Fleisch.
Thuidium assimile (Mitt.) A. Jaeger
T. recognitum (Hedw.) Lindb.

Fam. Amblystegiaceae
Amblystegium serpens (Hedw.) Bruch et al.
Campyliadelphus chrysophyllus (Brid.) Kanda
C. elodes (Lindb.) Kanda
Campylium sommerfeltii (Myrin) Ochyra
Campylium protensum (Brid.) Kindb.
Campylium stellatum (Hedw.) C. E. O. Jensen
Cratoneuron filicinum (Hedw.) Spruce
Drepanocladus aduncus (Hedw.) Warnst.
D. polygamus (Bruch et al.) Hedenäs
Drepanocladus sendtneri (Schimp. ex H. Müll.) Warnst.
Hygroamblystegium fluviatile (Hedw.) Loeske
Leptodictyum riparium (Hedw.) Warnst.
Palustriella falcata (Brid.) Hedenäs
Pseudocalliergon trifarium (F. Weber & D. Mohr) Loeske
Serpoleskea subtilis (Hedw.) Loeske
Tomentypnum nitens (Hedw.) Loeske

Fig. 5. Neckera pennata (Photo: Kimmo Syrjänen).
Fig. 6. Rhytidiadelphus subpinnatus (Photo: Kimmo Syrjänen).

Fig. 7. Trichocolea tomentella (Photo: Kimmo Syrjänen).
3.3 List of lichens and allied fungi collected on Zaonezhye Peninsula

Margarita A. Fadeeva*, Olli Manninen** and Kimmo Syrjänen***

*Forest Research Institute of Karelian Research Center of Russian Academy of Sciences,
11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
Corresponding author Margarita Fadeeva
E-mail: fadeeva@krc.karelia.ru

** Luonto-Liitto, Annankatu 26 A, 00100 Helsinki, Finland
*** The Finnish Environment Institute (SYKE), P.O.Box 140, 00251 Helsinki, Finland.

History of the studies of lichens in Zaonezhye Peninsula and adjacent islands

The pioneer study of the lichen flora on Zaonezhye Peninsula was undertaken in 1863 by two Finnish naturalists: student Th. Simming and lecturer A. Kullhem. They collected a large number of lichen specimens, which are now in the herbarium of the Botanical Museum of the Finnish Museum of Natural History, University of Helsinki (H). The collection was analyzed and partly published by W. Nylander (1866 a, c), the greatest lichen classifier at that time.

In the same time (1863) Alexander K. Günther was travelling, presumably together with Th. Simming and A. Kullhem, on Zaonezhye Peninsula. A. K. Günther, an Alexander Plant staff healer in the Olonets Province, who later collected lichens actively near Petrozavodsk, visited the northeastern part of the territory and Kizhi Island. The results of his trip are reported in his work “On flora of the Obonega Region Province” (Günther 1880), where lichens are not mentioned.

In 1870, Finnish botanist and phytogeographer J.P. Norrlin visited the biogeographic province Karelia onegensis (Kon) (it is Norrlin was the first scientist who recognized Kon province he interpreted it in a broader sense than modern authors do). Norrlin described many of the samples he collected near the villages of Velikaya Guba, Tolvuja and Shunga, together with the samples collected by Th. Simming and A. Kullhem, in the second part of his classical work «Flora Kareliae Onegensis. II. Lichenes» (Norrlin 1876). The collections of Th. Simming, A. Kullhem and J. P. Norrlin are referred to by E. A. Vainio in his fundamental work «Lichenographia Fennica. I–IV» (Vainio 1921, 1922, 1927, 1934). Norrlin’s collections are stored in H.
In 1898 and 1899, Finnish botanists A.K. Cajander and J.I. Lindroth (subsequently Liro) toured Russian Karelia and the Onega River area. They visited many places such as Kizhi Island, Bolshoi Klimenetsky Island, Bolshoi Lelikovsky Island (Point Radkolye), Yuzhny Oleny Island and other smaller islands. Their routes have been described and lists of the moss species, liverworts and lichens collected by Cajander and Lindroth have been published by T. Ahti and M. Boychuk (Ahti & Boychuk 2006). The list of lichens, which consists of 68 species, does not comprise samples from the Zaonezhye Peninsula.

In 1907, Russian agronomist and botanist E.K. Bezais took a 2-month field trip to Karelia. His goal was to study and describe the coastal and insular vegetation of Lake Onega. While travelling, he collected and described both plants and lichens. He submitted a detailed report on his trip (Bezais 1911), in which he mentioned Cladonia rangiferina (L.) F. H. Wigg. found on Paleostrov Island. The herbarium of Botanical Institute (LE) comprises at least two lichen samples collected by E.K. Bezais and A. Verdi «on north shore of Lake Onega»: Rhizocarpon badioatrum (Flörke ex Spreng.) Th. Fr. and Rhizocarpon distinctum Th. Fr. (Fadeyeva et al. 1997).

In 1920–1924, V.P. Savich joined the Olonets Scientific Expedition led by G.U. Vereshchagin and organized by the State Hydrological Institute together with the Main Botanical Gardens (now the Botanical Institute, RAS) and other scientific institutions, and collected lichen samples on shores of lakes Sandal, Segozero and Vygozero and near Povenets (west and north shores of Lake Onega). It is well-known that he also visited the Shunga area, because LE has a sample of Ophioparma ventosa (L.) Norman collected by V.P. Savich and L.I. Savich-Lyubitskaya on Gorodok Hill, 9 km southeast of Shunga. Unfortunately, many samples from a huge collection of lichens (several thousand samples) brought by V.P. Savich from Karelia and kept in LE (Vereshchagin 1921, 1924) have not yet been analyzed.

In the 1970s, T.P. Sizova and T. Yu. Tolpysheva of Moscow State University studied the species composition of lichens on famous wooden Church of Transfiguration on Kizhi Island (Tolpysheva et al. 2001).

In 2004, M.A. Fadeyeva joined a Russian-Finnish expedition to the Zaonezhye Peninsula and Lake Onega islands (3.–8 July, 2004). Russia was represented by E. Gnatjuk, A. Kravchenko, A. Kryshen’ & O. Kuznetsov and Finland by M. Piirainen, T. Lindholm, R. Ruuhijärvi & P. Uotila. She visited Bolshoi Klimenetsky Island (Klimensky Nos Peninsula and Point Lukovo), Bolshoi Lelikovsky Island (Point Radkolye), Megostrov, Paleostrov, Rechnoi, Shushenevsky and Yuzhny Oleny islands and the continental shore near Kuzaranada and Tipintsksy villages (Point Varnavolok).

In 2010, M.A. Fadeyeva, together with A. V. Kravchenko, V.I. Krutov, O.O. Pretetchenskaya and A.V. Ruokolainen (Forest Research Institute, KarRC, RAS), studied the area north and south of Velikaya Guba (the environs of the former villages Komlevo, Ryabovo, Lipovitsky and Lakes Palozero and Khmeleozero).

In 2012, M.A. Fadeyeva was involved in the integrated study of planned Zaonezhsky Landscape Reserve. The study was conducted by the Forest Research Institute, KarRC, RAS (Fadeyeva 2013). In 2012, A. V. Kravchenko and M.A. Fadeyeva studied the vascular plant and lichen flora of the mainland shores near the Kizhi Skerries from the village of Oyatevschina to Lake Vekhozero at the request of Kizhi Museum-Reserve (Fadeyeva & Kravchenko 2013). A list of 137 lichens and related fungi was made up, but it was not presented in the above publication. The lichen samples
collected by A. V. Kravchenko and M.A. Fadeyeva are in the Karelian Research Centre herbarium (PTZ).

Finally, in 2013, Olli Manninen, Kimmo Syrjänen and Margarita Fadeeva joined a Finnish-Russian Zaonezhye expedition in the framework of the BPAN project and collected lichen samples on southeastern part of Zaonezhye Peninsula (see Syrjänen et al. 2014, p. 212).

Acknowledgements

The author Margarita Fadeeva is thankful for professor Soili Stenroos (Head Curator of Fungi at Botanical Museum/Finnish Museum of Natural History University of Helsinki) for the help during her visits in Helsinki University Herbarium in 2011 and 2012, and for professor Teuvo Ahti for the permanent help in her work.

REFERENCES

List of lichens and allied fungi of Zaonezhye Peninsula

The list is compiled on basis of published data and from recent collections, as well as from specimens in the herbaria of Karelian Scientific Center of Russian Academy of Sciences, Petrozavodsk (PTZ), Institute of Botany of Russian Academy of Sciences, St. Petersburg PAH (LE), Botanical Museum of the Finnish Museum of Natural History, University of Helsinki (H), and University of Turku (TUR).

The nomenclature follows Nordin et al. (2011).

The list incorporates 298 species and infraspecific taxa of lichens, 3 species of lichenicolous fungi, and 3 species of saprotrophic fungi

1. *Acarospora fuscata* (Schrad.) Th. Fr. – Norrlin 1876; Fadeeva 2013; Podyelniki, on stones in the wall around old chapel, 08.07.2012, M.A. Fadeeva, PTZ.
3. *Adelolecia kolaēnsis* (Nyl.) Hertel & Rambold – Norrlin 1876; Vainio 1934.
4. *Alectoria sarmentosa* (Ach.) Ach. – Polya village -S, herb-rich spruce mire, on twigs of spruce, 25.08.2013, K. Syrjänen, TUR; Velikaya Guba -SW, Zubovo -N, NE of the Lake Pužej, siliceous east facing cliff, on rock wall, 24.08.2013, K.Syrjänen, TUR.

10. *Arthonia cinereopruinosa* Schaer. – Nylander 1866 a; Norrlin 1876.

11. *Arthonia mediella* Nyl.– Norrlin 1876.

16. *Bacidia bagliettoana* (A. Massal. & De Not.) Jatta – Norrlin 1876; Vainio 1922; Fadeeva 2013; Kizhi Island, on *Ulmus laevis*, 27.05.1999, M.A. Fadeeva, PTZ.

17. *Bacidia rubella* (Hoffm.) A. Massal. – Norrlin 1876; Vainio 1922.

18. *Bacidia subincompta* (Nyl.) Arnold – Norrlin 1876.

22. *Biatora pallens* (Kullh.) Printzen – Zubovo village, on *Sorbus aucuparia*, 03.07.2012, M.A. Fadeeva, PTZ.

24. *Blastenia crenularia* (With.) Arup et al. – Norrlin 1876.

27. *Bryoria fremontii* (Tuck.) Brodo & D. Hawksw. – Vegoruksy Village, ca. 1.5 km SE, forest-side edge of dry grassland on sandy ground, A.V. Kravchenko, 19.08.2010, PTZ.

33. *Buellia disciformis* (Fr.) Mudd – Fadeeva, 2000; Zubovo village, on bark of *Sorbus aucuparia*, 03.07.2012, M.A. Fadeeva, PTZ.

34. *Calicium salicinum* Pers. – Norrlin 1876; Zubovo village, on stump of *Salix caprea*, 04.07.2012, M.A. Fadeeva, PTZ.

35. *Calicium trabinellum* (Ach.) Ach. – Podyelniki, on wood of pine, 10.07.2012, M.A. Fadeeva, PTZ.

37. *Caloplaca cerina* (Hedw.) Th. Fr. – Tolpysheva et al. 2001; Zubovo village, on *Prunus padus*, 03.07.2012, M.A. Fadeeva, PTZ.

40. *Candelariella aurella* (Hoffm.) Zahlbr. – Tolpysheva et al. 2001; Kizhi Island, on *Ulmus laevis*, 28.05.1999, M.A. Fadeeva, PTZ.

41. *Candelariella coralliza* (Nyl.) H. Magn. – Er sanevo village, abandoned field, on stones, 05.07.2012, M.A. Fadeeva, PTZ.

42. *Candelariella vitellina* (Nyl.) H. Magn. – Ersenevo village, abandoned field, on stones, 05.07.2012, M.A. Fadeeva, PTZ.

44. *Cetraria erysiboides* (Nyl.) Th. Fr. – Nylander 1866 a; Norrlin 1876; Vainio 1934;

45. *Cetraria aculeata* (Schreb.) Fr. – Bol. Klim. Isl., Lukovo Bay, on rock, 05.07.2004, M.A. Fadeeva, PTZ.

47. *Cetraria islandica* (L.) Ach. subsp. *islandica* – Fadeeva 2000, 2013; Podyelniki, on ground, 10.07.2012, M.A. Fadeeva, PTZ.

49. *Cetraria sepincola* (Ehrh.) Ach. – Tolpysheva et al. 2001; Fadeeva 2000; Podyelniki, on stones in the wall around old chapel, 08.07.2012, M.A. Fadeeva, PTZ.

50. *Cetrelia cetrarioides* (Delise & Duby) W. L. Culb. & C. F. Culb. – on rocks, Paleostrov Island, 03.07.2004, M.A. Fadeeva, PTZ; Bolshoi Lelikovsky Island, Radkolye Cape, 06.07.2004, M.A. Fadeeva, PTZ.

52. *Chaenotheca brunnea* (Ach.) Müll. Arg. – Western shore of Lake Vekhkozero, on bark of spruce, 11.07.2012, M.A. Fadeeva, PTZ.

53. *Chaenotheca chlorella* (Ach.) Müll. Arg. – Tambitsy-NW towards Kaskoselga, herบรich - grassy swamp forest, on birch snag, 28.08. 2013, K. Syrjänen, TUR; Tambitsy-SW, mires NW of Kurnejnavolok cape, on old *Salix pentandra*, 27.08. 2013, K. Syrjänen, TUR; Polya village – S, on old birch, 25.08.2013, K. Syrjänen, TUR.

54. *Chaenotheca chrysocephala* (Turner ex Ach.) Th. Fr. – Vainio 1927; Fadeeva 2013; Podyelniki, on spruce along brook, 07.07.2012, M.A. Fadeeva, PTZ.

55. *Chaenotheca ferruginea* (Turner ex Sm.) Mig. – Norrlin 1876; Vainio 1927; Fadeeva 2013; western shore of Lake Vekhkozero, on bark of spruce, 11.07.2012, M.A. Fadeeva, PTZ.

56. *Chaenotheca furfuracea* (L.) Tibell – Vainio 1927; Fadeeva 2000; Fadeeva & Kravchenko 2013; south-eastern shore of Lake Vekhkozero, on spruce along brook, 11.07.2012, M.A. Fadeeva, PTZ.

57. *Chaenotheca gracilenta* (Ach.) Mattsson & Middelb. – Polya village, on roots of fallen spruce, 26.06.2013, M.A. Fadeeva, PTZ; Polya village -S, decaying stump, 25.08. 2013, K. Syrjänen, TUR.

59. *Chaenotheca subrosicida* (Eitner) Zahlbr. – Lipovitsy, along a brook, on stump of birch, 25.06.2013, M.A. Fadeeva, PTZ.

60. *Chaenotheca trichialis* (Ach.) Th. Fr. – Vainio 1927; surroundings of Zubovo village, on stump of pine, 04.07.2012, M.A. Fadeeva, PTZ.
61. Chaenotheca xyloxena Nádv. – Surroundings of Zubovo village, on stump of Salix caprea, 04.07.2012, M.A. Fadeeva, PTZ.

63. Chrysothrix chlorina (Ach.) J. R. Laundon – Fadeeva 2013; Podyelniki, on stones in the wall around old chapel, 10.07.2012, M.A. Fadeeva, PTZ.

64. Circinaria caesiocinerea (Nyl. ex Malbr.) A. Nordin et al. – Fadeeva 2000.

65. Cladonia anaurocracea (Flörke) Schær. – Fadeeva 2013; Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, M.A. Fadeeva, PTZ; northern shore of Lake Vekhkozero, on blocks of seismo-colluvial scree, 11.07.2012, M.A. Fadeeva, PTZ.

66. Cladonia arbuscula (Wallr.) Flot. – Fadeeva 2000; Tolpysheva et al. 2001; Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, M.A. Fadeeva, PTZ; northern shore of Lake Vekhkozero, on blocks of seismo-colluvial scree, 11.07.2012, M.A. Fadeeva, PTZ.

68. Cladonia bacilliformis (Nyl.) Glück – Podyelniki, on dry Juniperus communis, 10.07.2012, M.A. Fadeeva, PTZ.

70. Cladonia cenotea (Ach.) Schær. – Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, M.A. Fadeeva, PTZ.

71. Cladonia chlorophaea (Flörke ex Sommerf.) Spreng. – Fadeeva 2013; Northern end of Kizhi Island, abandoned field, on stones, 28.05.1999, M.A. Fadeeva, PTZ; Rechka abandoned village, on ground, 04.07.2012, M.A. Fadeeva, PTZ.

73. Cladonia coniocraea (Flörke) Spreng. – Fadeeva 2013; surroundings of Zubovo village, on bark of pine, 03.07.2012, M.A. Fadeeva, PTZ.

74. Cladonia cornuta (L.) Hoffm. s.l. – Fadeeva 2013; Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, northern shore of Lake Vekhkozero, on blocks of seismo-colluvial scree, 11.07.2012, M.A. Fadeeva, PTZ.

75. Cladonia crispata (Ach.) Flot. var. crispata – Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, M.A. Fadeeva, PTZ.

76. Cladonia deformis (L.) Hoffm. – Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, M.A. Fadeeva, PTZ.

77. Cladonia decorticata (Flörke) Spreng. – Fadeeva 2013.

78. Cladonia fimbrata (L.) Fr. – Tolpysheva et al. 2001; Fadeeva 2013; Zubovo village, on Salix caprea, 03.10.2012, M.A. Fadeeva, PTZ; Podyelniki, on roots of fallen spruce, 07.07.2012, M.A. Fadeeva, PTZ.

82. Cladonia phyllophora Hoffm. – Volkostrov Island, on soil, 31.05.1999, M.A. Fadeeva, PTZ; Podyelniki, abandoned field, on moss-covered stones, 08.07.2012, M.A. Fadeeva, PTZ.
83. *Cladonia pleurota* (Flörke) Schaer. – Fadeeva 2013; Podyelniki, abandoned field, on moss-covered stones, 08.07.2012, M.A. Fadeeva, PTZ; NW shore of Lake Vekhkozero, on blocks of seismo-colluvial scree, 11. 07.2012, M.A. Fadeeva, PTZ.
85. *Cladonia pyxidata* (L.) Hoffm. – Tolpysheva et al. 2001; Northern end of Ersenevo village, stone shore of Lake Onega, on ground, 05.07.2012, M.A. Fadeeva, PTZ.
86. *Cladonia rangiferina* (L.) F. H. Wigg. – Podyelniki, abandoned field, on moss-covered stones, 08.07.2012, M.A. Fadeeva, PTZ; NW shore of Lake Vekhkozero, on blocks of seismo-colluvial scree, 11. 07.2012, M.A. Fadeeva, PTZ.
87. *Cladonia squamosa* Hoffm. – Fadeeva 2013; NW shore of Lake Vekhkozero, on moss-covered stones in the rock wall (seismic dislocation), 11.07.2012, M.A. Fadeeva, PTZ.
89. *Cladonia stygia* (Fr.) Ruoss – Fadeeva 2013.
90. *Cladonia subulata* (L.) F. H. Wigg. – Fadeeva 2013; Zubovo village, on stones in abandoned field, 03.10.2012, M.A. Fadeeva, PTZ.
91. *Cladonia sulphurina* (Michx.) Fr. – Zubovo village, on stones in abandoned field, 03.10.2012, M.A. Fadeeva, PTZ.
92. *Cladonia symphycarpa* (Flörke) Fr. – Yuzhny Oleny Island, on dolomites, 20.07.2000, M.A. Fadeeva, PTZ.
93. *Cladonia turgida* Hoffm. – Fadeeva 2013; NW shore of Lake Vekhkozero on moss-covered stones in the rock wall (seismic dislocation), 11. 07.2012, M.A. Fadeeva, PTZ.
95. *Cladonia verticillata* (Hoffm.) Schaer. – Fadeeva 2013; NW shore of Lake Vekhkozero on moss-covered stones in the rock wall (seismic dislocation), 11. 07.2012, M.A. Fadeeva, PTZ.
96. *Collema flaccidum* (Ach.) Ach. – Kuzaranda village, on marble, 04.07.2004, M.A. Fadeeva, PTZ.
98. *Coenogonium luteum* (Dicks.) Kalb & Lücking – Nylander 1866 a; Norrlin 1876.
99. *Coenogonium pineti* (Ach.) Lücking & Lumbsch – Nylander 1866 a; Norrlin 1876; Tambitsy-NW towards Kaskokelga, swamp forest close to the bog, on birch snag, 28.08.2013, K. Syrjänen, TUR.
100. *Cyphelium karelicum* (Vain.) Räsänen – Nylander 1866a; Norrlin 1876; Vainio, 1922.
103. *Dermatocarpon miniatum* (L.) W. s.l. – Ashepnavolok Cape, 08.1870, J.P. Norrlin, N.
104. *Diploschistes scruposus* (Schreb.) Norman – Fadeeva 2013; Podyelniki, abandoned field, on moss-covered stones, 10.07.2012, M.A. Fadeeva, 2012 PTZ.
107. *Eversnia divaricata* (L.) Ach. – western shore of Bol. Klim. Isl., [Kishi (Vatnavolok)], on spruce twigs, 1863, A. Kullhem, H: Norrlin 1876; Lipovitsy, along the brook, on spruce twigs, 25.06.2013, M.A. Fadeeva, PTZ; Polya village, on spruce twigs, 26.06.2013, M.A. Fadeeva, PTZ; Uzkaya Salma, on spruce twigs, 28.06.2013, M.A. Fadeeva, PTZ; Tambitsy-SW, mires to the NW of the cape Kurnejnavolok,
herb-rich – grassy swamp forests at border of a pine bog, on twigs of spruces, 27.08.2013, K. Syrjänen, TUR; Polya village –S, herb-rich swamp forest, on old birch, 25.08.2013, K. Syrjänen, TUR; Velikaya Guba -SW, Zubovo –N, North east from Lake Pužej, open mire below an east facing cliff, on birch, 24.08.2014, K. Syrjänen, TUR; Tambitsy -N. W-NW from the small cape Tolstij Navolok, swamp forest, on trunk of Alnus glutinosa, 26.8.2013, K. Syrjänen, TUR.

108. Evernia mesomorpha Nyl. – Fadeeva 2013; Fadeeva & Kravchenko 2013; surroundings of Zubovo village, on bark of pine, Salix caprea, Juniperus, birch, 03.07.2013, M.A. Fadeeva, PTZ; on bark of pine, surroundings of Lake Rugozero Lake, 27.06.2013, M.A. Fadeeva, PTZ; Uzkaya Salma, on bark of pine, Juniperus communis, 28.06.2013, M.A. Fadeeva, PTZ; Velikaya Guba -SW, Zubovo –N, northeast from Lake Pužej, open oligotrophic mire, on trunk of birch, 24.08.2013, K. Syrjänen, TUR.

109. Evernia prunastri (L.) Ach. – Tolpysheva et al. 2001; west of Zubovo village, on Sorbus aucuparia, 03.07.2012, M.A. Fadeeva, PTZ.

111. Fuscopannaria praetermissa (Nyl.) P. M. Jørg. – Fadeeva 2013; NW shore of Lake Vekhkozero, on moss-covered stones in the rock wall (seismic dislocation), 11.07.2012, M.A. Fadeeva, PTZ.

112. Graphis scripta (L.) Ach. – Bol. Klim. Isl., on bark of Salix, 12.06.1863, Th. Simming, H: Nylander 1866 a; Norrlin 1876; NE end of Bol. Klim. Isl., on dry Sorbus aucuparia, 27.05.1999, M.A. Fadeeva, PTZ.

114. Gyalecta truncigena (Ach.) Hepp – 4 km N to Velikaya Guba village, on trunk of old aspen, 26.06.2013, M.A. Fadeeva, PTZ.

115. Gyalecta ulmi (Sw.) Zahlbr. – Dianova Gora, 1863, Th. Simming, H; Lipovitsy village –SW, to the west of Lake Bezdonnoe, brook-side herb-rich deciduous forest, on old Ulmus, 23.08.2013, K. Syrjänen, TUR.

118. Hypocenomyce scalaris (Ach.) M.Choisy – Fadeeva 2013; NW shore of Lake Vekhkozero, on bark of pine, M.A. Fadeeva, 11.07.2012, PTZ.

120. Hypogymnia tubulosa (Schae.) Hav. – Tolpysheva et al. 2001; Fadeeva 2000, 2013; Pustoy Bereg abandoned village, on birch, 04.07.2012, M.A. Fadeeva, PTZ.

121. Hypogymnia viitata (Ach.) Parrique – Norrlin 1876; Komlevo abandoned village, on moss-covered basement rocks, 17.08.2010, M.A. Fadeeva, PTZ.

122. Icmadophila ericetorum (L.) Zahlbr. – Norrlin 1876.

123. Immersaria cupreocatra (Nyl.) Calat. & Rambold – Norrlin 1876.

124. Imshaugia aleurites (Ach.) S. L. F. Mey. – Podyelniki, on bark of pine, 10.07.2012, M.A. Fadeeva, PTZ.

125. Lathagrium fuscovirens (With.) Otálora et al. – Fadeeva 2013.

128. Lecanora allophana Nyl. – Fadeeva 2013; surroundings of Zubovo village, on old aspens, 04.07.2012, M.A. Fadeeva, PTZ.
131. *Lecanora fuscescens* (Sommerf.) Nyl. – Norrlin 1876.
133. *Lecanora intricata* (Ach.) Ach. – Podyelniki, on stones, 08.07.2012, M.A. Fadeeva, PTZ.
134. *Lecanora leptyrodes* (Nyl.) G.B.F. Nilsson – Fadeeva 2000; North to Oyatevshina village, on aspen, 05.07.2012, M.A. Fadeeva, PTZ.
135. *Lecanora muralis* (Schreb.) Rabenh. – Fadeeva 2013; North to Ersenevo village, on stones in the abandoned field, 05.07.2012, M.A. Fadeeva, PTZ.
139. *Lecanora symmicta* (Ach.) Ach. s.l. – Severnye Oleny Island, on birch, 29.05.1999, M.A. Fadeeva, PTZ; Podyelniki, on dry *Juniperus communis*, 08.07.2012, M.A. Fadeeva, PTZ.
142. *Lecidea erythrophaea* Flörke ex Sommerf. – Norrlin 1876; Tolpysheva et al. 2001; Fadeeva 2013; Severnye Olney Island, on aspen, 29.05.1999, M.A. Fadeeva, PTZ.
143. *Lecidea leprarioides* Tønsberg – Lipovitsy, along the brook, on bark of spruce, 25.06.2013, M.A. Fadeeva, PTZ.
146. *Lepraria membranacea* (Dicks.) Vain. – Fadeeva 2013.
147. *Leproplaca obliterans* (Nyl.) Arup et al. – Norrlin 1876.
148. *Leptogium saturninum* (Dicks.) Nyl. – Fadeeva 2000, 2013; Fadeeva & Kravchenko 2013; surroundings of Zubovo village, on bark of aspen, 03.07.2012, M.A. Fadeeva, PTZ; Polya village, on bark of aspen, 26.06.2013, M.A. Fadeeva, PTZ.
150. *Lobaria pulmonaria* (L.) Hoffm. – Fadeeva 2000, 2013; surroundings of Zubovo village, on *Populus tremula*, *Sorbus aucuparia* and *Juniperus communis*, 03.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko 2013; surroundings of Zubovo village, on *Salix caprea*, 04.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko 2013; Podyelniki, on old aspens, 10.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko 2013; Rybya Bay of Lake Onega, on aspen, 11.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko 2013; NW shore of Lake Vekhkozero, on *Salix caprea*, 11.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko, 2013; Lipovitsy, along the brook, on drying *Sorbus aucuparia*, 25.06.2013, M.A. Fadeeva, PTZ; Polya village, stump of *Salix caprea*, 26.06.2013, M.A. Fadeeva, PTZ; Tambitsy N, W-NW from the small cape Tolstij Navolok, mixed herb-rich forest, fallen on ground from a large aspen, with sporophytes, 26.08. 2013, K. Syrjänen, TUR.
151. *Lobaria scrobiculata* (Scop.) DC. – Fadeeva 2013; Lipovitsy, along the brook, on drying *Sorbus aucuparia*, 25.06.2013, M.A. Fadeeva, PTZ.
152. *Lobothallia melanaspis* (Ach.) Hafellner – Bolshoi Lelikovsky Island, Radkolye Cape, on shore rocks, 06.07.2004, M.A. Fadeeva, PTZ.
153. *Lopadium coralloideum* (Nyl.) Lynge – Norrlin 1876; Vainio 1922.
154. *Lopodium disciforme* (Flot.) Kullh. – Lipovitsy, along the brook, on bark of spruce, 25.06.2013, M.A. Fadeeva, PTZ.

158. *Melanelia stygia* (L.) Essl. – Fadeeva 2013; Shunga, 1870, J.P. Norrlin, Podyelniki, abandoned fields, on stones, 03.07.2012, M.A. Fadeeva, PTZ.

159. *Melanelia fuliginosa* (Fr. ex Duby) O.Blanco et al. – Fadeeva 2013.

161. *Melanothele exasperata* (De Not.) O. Blanco & al. – Fadeeva 2000; Tolpysheva et al. 2001; Fadeeva & Kravchenko 2013; Paleostrov Island, on *Tilia cordata*, 03.07.2004, M.A. Fadeeva, PTZ; North to Zubovo village, on *Sorbus aucuparia*, *Prunus padus*, *Salix caprea*, 03.07.2012, M.A. Fadeeva, PTZ.

162. *Melanothele exasperatula* (Nyl.) O. Blanco & al. – The northern end of Kizhi Island, on *Ulmus laevis*, 30.05.1999, M.A. Fadeeva, PTZ.

163. *Melanothele olivacea* (L.) O. Blanco & al. – Fadeeva 2000; Tolpysheva et al. 2000; surroundings of Zubovo village, on *Salix caprea*, on birch, 03.07.2012, M.A. Fadeeva, PTZ.

165. *Micarea denigrata* (Fr.) Hedl. – North to Zubovo village, on stump of pine, 03.07.2012, M.A. Fadeeva, PTZ.

166. + *Microcalicium arenarium* (Hampe ex A. Massal.) Tibell – Lipovitsy, along the brook, on roots of fallen spruce, 25.06.2013, M.A. Fadeeva, PTZ.

167. *Microcalicium disseminatum* (Ach.) Vain. – Rybya Bay of Lake Onega, on bark of spruce, 11.07.2012, M.A. Fadeeva, PTZ: Fadeeva & Kravchenko 2013; Lipovitsy, along the brook, on *Chaenotheca* sp., 25.06.2013, M.A. Fadeeva, PTZ; Polya village, stump of birch, 26.06.2013, M.A. Fadeeva, PTZ.

168. *Montanelia disjuncta* (Erichsen) Divakar et al. – Fadeeva 2013; Podyelniki, on stones, 08.07.2012, M.A. Fadeeva, PTZ.

170. *Montanelia soreliata* (Ach.) Divakar et al. – Kizhi Island, on Kizhi church wall, 31.05.1999, M.A. Fadeeva, PTZ.

176. *Myriospora heppii* (Nägeli ex Körb.) Hue – Norrlin 1876.

179. *Nephroma bellum* (Spreng.) Tuck. – North to Zubovo village, on aspen, *Salix caprea*, 03.07.2012, M.A. Fadeeva, PTZ: Fadeeva & Kravchenko 2013; Rybya Bay of Lake Onega, on bark of aspen, 11.07.2012, M.A. Fadeeva, PTZ: Fadeeva & Kravchenko 2013; Lipovitsy, along the brook, on drying *Sorbus*, 25.06.2013, M.A. Fadeeva, PTZ; Polya village -S, herb-rich swamp forest, on large *Salix pentandra*, 25.08.2013, K. Syrüjänen, TUR.
180. *Nephroma parile* (Ach.) Ach. – Fadeeva 2000, 2013; Fadeeva & Kravchenko 2013; North to Zubovo village, on aspen, 03.07.2012, M.A. Fadeeva, PTZ; Rybya Bay of Lake Onega, on bark of aspen, 11.07.2012, M.A. Fadeeva, PTZ.

181. *Nephroma resupinatum* (L.) Ach. – Fadeeva 2013; Fadeeva & Kravchenko 2013; Dianova Gora, 1863, Th. Simming, H; Rybya Bay of Lake Onega, on bark of aspen, 11.07.2012, M.A. Fadeeva, PTZ; Lipovitsy, along the brook, on drying *Sorbus aucuparia*, 25.06.2013, M.A. Fadeeva, PTZ.

182. *Ochrolechia androgyna* (Hoffm.) Arnold – Dianova Gora, 26.08.1863, Th. Simming, H.

183. *Ophioparma ventosa* (L.) Norman – Norrlin 1876; Fadeeva 2013; Gorodok Hill, on diabase, 27.06.1924, V. P. Savich & L. I. Savich-Lyubitskaya, LE.

184. *Parmelia fraudans* (Nyl.) Nyl. – Norrlin 1876; Fadeeva 2000, 2013; Podyel’nik, on stones, 08.07.2012, M.A. Fadeeva, PTZ.

188. *Parmelina tiliacea* (Hoffm.) Hale – Fadeeva et al. 2007; Paleostrov Island, on *Tilia cordata*, 03.07.2004, M.A. Fadeeva, PTZ.

189. *Parmeliopsis ambiguа* (Wulfen) Nyl. – Tolpysheva et al. 2001; Fadeeva 2013; North to Zubovo village, on *Salix caprea*, 03.07.2012, M.A. Fadeeva, PTZ.

200. *Peltigera neckeri* Hepp ex Müll. Arg. – Fadeeva 2000; Kizhi Island, Yamka village, the shore of Lake Onega, on soil, 27.05.1999, M.A. Fadeeva, PTZ; Bol. Klim. Isl., on base of aspen trunk, 27.05.1999, M.A. Fadeeva, PTZ.

204. *Peltigera praetextata* (Flörke ex Sommerf.) Zopf – Fadeeva 2000, Fadeeva & Kravchenko 2013; surroundings of Zubovo village, on base of aspen, 03.07.2012, M.A. Fadeeva, PTZ; North to Oyatevshina village, on aspen, 05.07.2012, M.A. Fadeeva, PTZ; Lipovitsy, on aspen, 25.06.2013, M.A. Fadeeva, PTZ; Polya village, on stump of *Salix caprea*, 26.06.2013, M.A. Fadeeva, PTZ.

209. *Pertusaria amara* (Ach.) Nyl. – Tolpysheva et al. 2001; Fadeeva 2013; North to Zubovo village, on aspen, 04.07.2012, M.A. Fadeeva, PTZ.

211. *Phaeophyscia ciliata* (Hoffm.) Moberg – Kainos Island (NE from Tolvuya), on aspen, 03.07.2004, P. Uotila, H; North to Oyatevshina village, clear-cut for new road, on aspen, 05.07.2012, M.A. Fadeeva, PTZ.

212. *Phaeophyscia orbicularis* (Neck.) Moberg – Fadeeva 2000; Shunga, on rock, 1870, J.P. Norrlin, H; Kizhi Island, 2 km to the North from the church, on trunk of *Ulmus laevis*, 26.05.1999, M.A. Fadeeva, PTZ.

213. *Phaeophyscia sciastra* (Ach.) Moberg – Bolshoi Leilikovsky Isl., on stony shore of Lake Onega, 06.07.2004, M.A. Fadeeva, PTZ.

214. *Phlyctis argena* (Spreng.) Flot. – Fadeeva 2000, 2013; North to Zubovo village, on aspen, 03.07.2012, M.A. Fadeeva, PTZ.

216. *Physcia adscendens* (Fr.) H. Olivier – Fadeeva 2000; Shunga, 1870, J.P. Norrlin, H; Kainos Island (NE from Tolvuya), on aspen, 03.07.2004, P. Uotila, H; Pustoy Bereg abandoned village, on *Ulmus laevis*, 04.07.2012, M.A. Fadeeva, PTZ.

218. *Physcia alnophila* (Vain.) Loht., Moberg, Myllys & Tehler – Fadeeva 2013; West to Zubovo village, 03.07.2012, M.A. Fadeeva, PTZ.

224. *Physcia tenella* (Scop.) DC. – Norrlin 1876; Fadeeva 2000; Pustoy Bereg abandoned village, on *Ulmus laevis*, 04.07.2012, M.A. Fadeeva, PTZ.

225. *Physconia detersa* (Nyl.) Poelt – Shunga, on rock, 1870, J.P. Norrlin, H; Podyelniki, on old aspens, 10.07.2012, M.A. Fadeeva, PTZ.
226. *Physconia distorta* (With.) J. R. Laundon – Eastern shore Kizhi Island, on old *Ulmus*, 27.05.1999, M.A. Fadeeva, PTZ.
227. *Physconia enteroxantha* (Nyl.) Poelt – Eastern shore Kizhi Island, on old *Ulmus*, 27.05.1999, M.A. Fadeeva, PTZ.
228. *Physconia perisidiosa* (Eriksen) Moberg – Fadeeva 2013; eastern shore Kizhi Island, on old *Ulmus*, 27.05.1999, M.A. Fadeeva, PTZ.
229. *Pilophorus cereolus* (Ach.) Th. Fr – Nylander 1866 a; Norrlin 1876.
236. *Porpidia tuberculosa* (Sm.) Hertel & Knoph – Shunga, 1870, J.P. Norrlin, H.
238. *Protoparmelia badia* (Hoffm.) Hafellner – NW shore of Lake Vekhkozero, on blocks of seismo-colluvial scree, 11.07.2012, M.A. Fadeeva, PTZ.
240. *Psilolechia clavulifera* (Nyl.) Coppins – Lipovitsy, along the brook, on roots of fallen spruce, 25.06.2013, M.A. Fadeeva, PTZ.
241. *Psilolechia lucida* (Ach.) M. Choisy – Klimenitsky Monastery, 12.06.1863, Th. Simming, H; Podyelniki, on stones, 08.07.2012, M.A. Fadeeva, PTZ.
242. *Pyrenopsis pleiobola* Nyl. – Norrlin 1876.
243. *Ramalina baltica* Lettau – Velikaya Guba, 1870, J.P. Norrlin, H; Norrlin 1876; Paleostrov Island, on old *Tilia cordata*, 03.07.2004, M.A. Fadeeva, PTZ; Lipovitsy, on old aspen, 25.06.2013, M.A. Fadeeva, PTZ.
244. *Ramalina dilacerata* (Hoffm.) Hoffm. – Fadeeva 2013; North to Zubovo village, on *Salix caprea*, 03.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko 2013; Oyatevshina village, on *Salix caprea*, 05.07.2012, M.A. Fadeeva, PTZ; Fadeeva & Kravchenko 2013; Lipovitsy, along the brook, on drying *Sorbus aucuparia*, 25.06.2013, M.A. Fadeeva, PTZ.
245. *Ramalina farinacea* (L.) Ach. – Fadeeva 2013; surroundings of Zubovo village, on aspen, 03.07.2012, M.A. Fadeeva, PTZ; Podyelniki, on stone in the wall around old chapel, 10.07.2012, M.A. Fadeeva, PTZ.
246. *Ramalina pollinaria* (Westr.) Ach. – Fadeeva 2000; Podyelniki, on stone in the wall around old chapel, 10.07.2012, M.A. Fadeeva, PTZ; NW shore of Lake Vekhkozero, on stone wall, 11.07.2012, M.A. Fadeeva, PTZ.
250. *Rhizocarpon geographicum* (L.) DC. s.l. – Fadeeva 2013; Bolshoi Lelikovsky Island, Radkolye Cape, on shore rocks, 06.07.2004, M.A. Fadeeva, PTZ.
257. *Sclerophora coniophaea* (Norman) J. Mattsson & Middelb. – Velikaya Guba – SW, Zubovo –N, NE of Lake Pužej, spruce swamp – mixed herb-rich forest at E-base of siliceous cliff, on birch snag, abundant, 24.8.2013, K. Syrjänen, TUR; Tambitsy NW towards Kaskoselga, herb-rich – grassy swamp forest, on birch snag, 28.08.2013, K. Syrjänen, TUR.
258. *Scoliciosporum chlorococcum* (Graewe ex Stenh.) Vězda – Eastern shore Kizhi Island, Yamka village, about 0.5 km to the North, on pine, abundant, 28.05.1999, M.A. Fadeeva, PTZ.
259. *Scytinium fragrans* (Sm.) Otálora et al. – Fadeeva 2013.
260. *Scytinium gelatinosum* (With.) Otálora et al. – Norrllin 1876; Yuzhny Oleny Island, on dolomites, M.A. Fadeeva, 05.07.2004, PTZ.
263. *Scytinium teretiusculum* (Wallr.) Otálora et al. – Fadeeva 2013; Lipovitsy, along the brook, on bark of aspen, 25.06.2013, M.A. Fadeeva, PTZ.
265. *Spilonema revertens* Nyl. – Norrllin 1876.
266. *Staurothele frustulenta* Vain. – Vainio 1921.
270. *Stereocaulon saxatile* H. Magn. – Fadeeva 2013; Ersenevo village, stony shore of Lake Onega, M.A. Fadeeva, 05.07.2012, PTZ.
271. *Stereocaulon subcoralloides* (Nyl.) Nyl. – Fadeeva 2013; on stone basement of old main church of Kizhi, 31.05.1999, M.A. Fadeeva, PTZ.
276. *Thamnolia vermicularis* (Sw.) Schae. – Velikaya Guba -SW, Zubovo -N, NE of Lake Pužej. East facing siliceous cliff-wall and boulder scree above an open mire, on many boulders – Locally rather common, 24.08.2013, K. Syrjänen, TUR.
278. *Tuckermanopsis chlorophylla* (Will.) Hale – Fadeeva 2000; Tolpysheva et al. 2001; Podyelniki, on stones, 10.07. 2012, M.A. Fadeeva, PTZ.
283. *Umbilicaria deusta* (L.) Baumg. – Fadeeva 2000; 2013; Ersenevo village, stony shore of Lake Onega, 05.07.2012, M.A. Fadeeva, PTZ.
284. *Umbilicaria hirsuta* (Sw. ex Westr.) Hoffm. – Fadeeva 2013.
285. *Umbilicaria hyperborea* (Ach.) Hoffm. – Fadeeva 2013; Podyelniki, shore Lake Onega, on stones, 10.07.2012, M.A. Fadeeva, PTZ.
288. *Usnea barbata* (L.) Weber ex F.H.Wigg. – Lipovitsy, along the brook, on spruce, 25.06.2013, M.A. Fadeeva, PTZ.
293. *Usnea subfloridana* Stirt. – Fadeeva 2013; Podyelniki, on bark of pine, 10.07.2012, M.A. Fadeeva, PTZ.
294. *Vahliella leucophaea* (Vahl) P. M. Jørg. – Fadeeva 2013; Ashepnavolok Cape, 1870, J.P. Norrlin, H; Bolshoi Lelikovsky Island, on rock outcrops, 06.07.2004, M.A. Fadeeva, PTZ; Rybya Bay of Lake Onega, eastern slope, on rock outcrops, 11.07.2012, M.A. Fadeeva, PTZ.
296. *Xanthoparmelia conspersa* (Ehrh. ex Ach.) Hale – Krestovy Isl., abandoned field, on boulders, 29.05.1999, M.A. Fadeeva, PTZ; Ersenevo village, abandoned field, on stones, 05.07.2012, M.A. Fadeeva, PTZ; Podyelniki, abandoned field, on stones and mossy rocks, 10.07.2012, M.A. Fadeeva, PTZ.
297. *Xanthoparmelia pulla* (Ach.) O.Blanco et al. – Norrlin 1876; Fadeeva 2013.
298. *Xanthoparmelia stenophylla* (Ach.) Ahti & D. Hawksw. – Fadeeva 2013; Ersenevo village, abandoned field, on stones, 05.07.2012, M.A. Fadeeva, PTZ; Podyelniki, abandoned field, on stones and mossy rocks, 10.07.2012, M.A. Fadeeva, PTZ.
299. *Xanthoparmelia verruculifera* (Nyl.) O.Blanco et al. – Fadeeva 2013.
300. *Xylopsora friesii* (Ach.) Bendiksby & Timdal – Nylander 1866 a; Norrlin 1876; Fadeeva 2013; NW shore of Lake Vekhkozero, on bark of pine, 11.07.2012, M.A. Fadeeva, PTZ.
301. *Xanthoria parietina* (L.) Th. Fr. – Norrlin 1876; Fadeeva 2000; North to Zubovo village, on *Salix caprea*, 03.07.2012, M.A. Fadeeva, PTZ.
304. *Xylographa vitiligo* (Ach.) J. R. Laundon – Norrlin 1876; Fadeeva 2013; Podyelniki, on wood of pine, 10.07.2012, M.A. Fadeeva, PTZ.
3.4 Red-listed and indicator lichens of Zaonezhye Peninsula

Kimmo Syrjänen*, Olli Manninen** and Margarita A. Fadeeva***

* The Finnish Environment Institute (SYKE), P.O.Box 140, 00251 Helsinki, Finland.
** Olli Manninen, Luonto-Liitto, Annankatu 26 A, 00100 Helsinki, Finland
***Forest Research Institute of Karelian Research Center of Russian Academy of Sciences, 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia

Introduction

Some of the lichen collections from Zaonezhye Peninsula date back more than a hundred years, when lichenologists and other botanists of the Imperial Alexander University of Finland made field excursions to Karelia. Also Zaonezhye Peninsula (Äänisniemi) was visited at that time. The first lichen flora of Karelia Onegensis (Kori) was published by Johan Petter Norrlin already in 1876 (Norrlin 1876, see also Ahti & Boychuk 2006). At the time, for example, Ramalina obtusata was collected from Zaonezhye near Velikaya Guba and another threatened species of the genus Ramalina, R. thrausta, from Dianova Gora. However, most of the collections and observations of lichens from this area were made in the early 2000’s (2000–2013), mainly by researchers from the Karelian Research Center of the Russian Academy of Sciences (Fadeeva 2013, Fadeeva & Kravchenko 2013). Altogether 1276 species of lichens are found in Karelia (Fadeeva et al. 2007) and about half of them (52 %) are present in Karelia onegensis. Margarita A. Fadeeva has listed 129 lichen species from Zaonezhye Peninsula in 2013. Her article (Fadeeva 2013) includes mainly sites in northern and central parts of the peninsula. Studies by Tolpyshova et al. (2001) and Fadeeva & Kravchenko (2013) have main focus on lichen flora of Kizhi archipelago. All these works include observations of many red-listed and indicator lichen species of pristine forests and other habitat hotspots.

In the summers 2012 and 2013, Fadeeva continued inventories of lichens in many parts of Zaonezhye (for example, around the villages of Lipovitsy, Podyelniki, Zubovo and Polyja). List of collections is presented in chapter 3.3. Kimmo Syrjänen and Olli Manninen observed lichens in many parts of southern and southwestern Zaonezhye Peninsula during two weeks in late August 2013. As a result of the inventories of the most recent years the number of known lichen species has more than doubled in Za-
onezhye, being now over 304. Lichens specimens collected by Syrjänen and Manninen in 2013 are mainly deposited in the Turku University herbarium (TUR) and materials collected by Fadeeva are available in the Karelian Research Centre herbarium (PTZ) in Petrozavodsk. In chapter 3.3 there is a list of lichen specimens which have been collected from Zaonezhye to different scientific herbaria in Russia and Finland. All Finnish collections of the year 2013 have not yet been entirely included in the list.

Material and methods

During the inventory in 2013 by the Finnish group most attention was paid to localities that were selected in earlier inventories (by the non-governmental nature conservation organization SPOK or Karelian Research Centre) or that looked promising in remote sensing images (TM/SPOT satellite imagery). We tried to visit as many forest compartments (kvartal) with pristine-like forests as possible within the study area. However, some of the forest compartments (kvartal), or parts of them, had been recently clear-cut. Nevertheless, we spent most of the time in old-growth forests, swamp forests and brook-side forests. Data were collected especially on indicator lichens, based on Andersson et al. (2009), and red-listed species of Karelia, based on Ivantar & Kuznetsov (2007). Special attention was paid to Calicioid lichens, many of which are used as indicator species of forest habitat quality (Tibell 1999, Andersson et al 2009).

Many of the lichen indicator species suggest a continuity of forest habitats, a stable microclimate and an intact hydrology as well as the presence of very old living and dead trees. Although the inventories concentrated on forest habitats, the authors visited also several bogs and mires as well as some rock outcrops with both basic and siliceous bedrock. During the field trip, we collected data on other species groups as well (vascular plants, fungi, bryophytes). Therefore, the results on lichens are far from complete, although they give a general insight into the importance of Zaonezhye for indicator and red-listed species. Because observation of crustaceous lichens is time consuming, more attention was paid to particularly easily observable species, especially Lobaria pulmonaria.

Also other members of the inventory group, especially Jyri Mikkola, Olli-Pekka Tikkanen and Timo Kuuluvainen, informed us about the occurrence of Lobaria pulmonaria and other easily identifiable lichen species.

Results

The list of observed red-listed and indicator species and frequency of observations are shown in Table 1. Chapter 3.3. contains a more detailed list of lichens specimens collected on Zaonezhye. So far it includes 304 lichen species.

Epiphytes of deciduous trees

Large aspen trees (Populus tremula) are present throughout the Zaonezhye landscape, both in remote herb-rich old-growth forests and in late-successional deciduous stands close to abandoned old villages. These aspen trees host a rich epiphyte flora. The large, leafy lichen Lobaria pulmonaria is very common in Zaonezhye. Individuals of Lobaria pulmonaria were often healthy, and we observed apothecia in many places. Also, we found the parasite fungus of Lobaria pulmonaria, Plectocarpon lichenum a couple of times in Zaonezhye. In 2013 we recorded Lobaria pulmonaria from 493 sites throughout the southern half of Zaonezhye Peninsula. Another typical epiphyte of aspens in the area is the indicator lichen Leptogium saturninum. Aspen trees also host other foliose lichens that
live in symbiosis with cyanobacteria. These include species from the genera *Nephroma* spp. and *Peltigera* spp. For example, *Peltigera praetextata* and *P. canina* are occasionally found at the base of large aspens throughout Zaonezhye. *Neproma parile* and *Nephroma bellum* are relatively common epiphyte species, whereas *Nephroma resupinatum* is more rare. The latter indicator species was found only in a half a dozen locations during the 2013 survey.

These folious indicator species are also growing on certain other deciduous trees, mainly on Rowan (*Sorbus aucuparia*), Goat willow (*Salix caprea*) and Bay willow (*Salix pentandra*) and sometimes also on old birches. Old individuals of these tree species are common at the mire margins as well as in swamp forests and herb-rich forests. Other indicator epiphytes of deciduous trees in Zaonezhye include *Parmeliella triptophylla*, *Pannaria pezizoides* and *Leptogium teretiusculum*, which were occasionally found from old herb-rich mixed forests. The presence of these lichens on aspen and other deciduous trees indicates that there is continuity of old deciduous trees and a suitable microclimate and the landscape is connected so that most epiphyte lichen species can disperse and colonize new trees.

Peltigera collina was the most rare epiphyte in its genus of folious lichens and was found only twice. Also epiphyte species of the genus *Collema* seem to be rare in Zaonezhye: *Collema subnigrescens/nigrescens* was found a few times, *Collema fragrans* only once.

Bay willow (*Salix pentandra*) is a relatively common tree species in Zaonezhye. It grows regularly at the margins of mires and swamp forests as well as by the side of brooks and rivulets. Trunks of big trees seem to be good substrata for lichen epiphytes. In addition to *Loparia pulmonaria* and *Nephoma* spp. they are often colonized by several other species, including *Ramalina* spp. and Calicioid lichens such as *Chaenotheca chlorella* and *Calicium lichenoides*. The commonness of Bay willow is probably due to the fact that most mires have not been drained by ditching. Also beaver activity increases flooding dynamics in mire ecosystems and riparian environments. This contributes to the establishment and growth of *Salix pentandra*.

![Fig. 1. Salix pentandra swamp forest (Photo: Kimmo Syrjanen).](image-url)
Also some broadleaf hardwood trees such as *Tilia cordata* grow in the herb-rich forests of Zaonezhye. *Tilia cordata* is found occasionally on rich soils. *Ulmus laevis* grows in many sites at Zaonezhye, especially in Kizhi archipelago. One place worth mentioning is an *Ulmus glabra* stand southwest of the village of Lipovitsy (whose Russian name refers to a lime tree). In the upper course of a small brook that runs out of Lake Bedzdonnaye, a herb-rich deciduous forest grows about a dozen big elm trees with an interesting lichen epiphyte flora. *Bacidia rubella*, *Gyalecta ulmi* and *Sclerophora pallida* (syn. *S. nivea*) grow on the elm trunks. The presence of elm trees and these temperate lichen species are a consequence of the favourable climatic conditions and rich soils of Zaonezhye Peninsula.

Small swamps forests with *Alnus glutinosa* occur in many brook valleys and swampy depressions. In one location, we found the crustaceous *Arthonia spadicea* growing on black alder trunks. It is a red-listed indicator species of black alder swamp-forests. We also found *Coenogium pineti* growing on trunks of black alder trees in swamp forests. It is a typical species of this habitat. In addition, *Arthonia leucopellea* has been found as epiphyte of *Alnus glutinosa* in Zaonezhye. However, most occurrences of this red-listed indicator species in Zaonezhye are on spruce trunks. It typically grows on the bark of old, living spruces in swamp forests and at mire margins.

Large old birches (both *Betula pendula* and *B. pubescens*) grow in several forest habitats in Zaonezhye, including herb-rich and pristine forests as well as swamp forests and late-successional stands of deciduous forests. Even though *Lobaria pulmonaria* can occasionally be found also on the trunks of birches, these are not that important for foliious species in Zaonezhye. However, birch trees host a wide range of crustaceous lichen species. Especially *Chaenotheca brachypoda* is a common indicator species on old, partly rotten birches. In swamp forests and old-growth forests, *Sclerophora coniophaea* is often found by the sides of brooks, on the trunks of very old living birches or dead birch snags.

Usnea lichens and other fruticose epiphytes

Many hanging fruticose lichens are considered to be indicators of good air quality, moist microclimate and forest continuity. Especially *Usnea* spp., *Bryoria* spp., *Alectoria sarmentosa*, *Ramalina thrausta* and *Evernia divaricata* are such species. In Zaonezhye Peninsula, *Usnea* lichens are most frequently found along bog and mire margins as well as in swamp forests and pristine old-growth forests. These species hang from twigs and trunks of both coniferous and deciduous trees. In the genus *Usnea*, common species *Usnea dasypoga* and *Usnea subfloridana* seem to prevail, although this genus was not studied in detail during the field trip. However, both more rare and threatened species *Usnea barbata*, *U. chaetophora*, *U. glabrescens* and *U. lapponica* have been collected from few places in Zaonetshye. In the genus *Bryoria*, widely distributed species like *Bryoria capillaris* and *B. fuscescens* (sensu lato) are common and can sometimes completely cover small spruces at the margins of mires. Also *Bryoria furcellata*, which demands a more natural environment, is generally found at these sites. The large, hanging *Bryoria fremontii* is not abundant on Zaonezhye Peninsula, although it has been found at a couple of sites. *Bryoria nadovnikiana* seems to be rare, with only a few individuals found at seven sites. Surprisingly, also *Alectoria sarmentosa* seems to be a relatively rare or occasional species. Especially larger healthy populations are scarce in Zaonezhye. However, *Evernia divaricata* was found at 58 sites, typically in transition zones between mires and forests. It can grow on the trunks and twigs of almost all tree species of the region. The size and health of individual lichens varies a lot, but most of the individuals are small and the populations scarce. There are also populations with a large amount of individuals where the length of healthy individuals of hanging
lichens can reach approximately 20–30 cm. In our inventories there were no sightings of *Ramalina thrausta*, which has not been found from Zaonezhye for over 100 years.

Fig. 2. Healthy hanging *Evernia divaricata* with *Usnea* sp. and *Bryoria* spp. (Photo: Kimmo Syrjänen).

Epiphytes of spruce

In addition to fruticous species on the branches and trunks of spruces, many crustaceous lichens grow on the bark of old living trees or on the bare wood of dead standing spruces. These include several indicator species of pristine forests, moist microclimate and very old trees. We found *Lecanactis abietina* in a few places. It is a crustaceous lichen, typically growing on the bark of old spruces. We also found *Arthonia leucopellea*, which prefers spruces in swamp forests, from a couple of places in the
area. This species was also recorded from *Alnus glutinosa*. In addition, we observed *Chaenotheca subroscida*, which is a Calicioid lichen, typically growing on spruce bark in moist pristine forests. We also found *Lobadium disciforme* from both spruce bark and deciduous trees in Zaonezhye.

Lichens on dead wood

Tall stumps and snags of spruces and deciduous trees are extremely important for many crustaceous lichens in old-growth pristine forests. Some species, like *Chaenotheca chlorella*, prefer growing on deciduous trees but are also found from dead wood of spruce and deciduous trees. Others, like *Chaenotheca laevigata* and *Chaenotheca gracillima*, grow mainly on bare wood and dead trees but can also grow on the bark of living trees. In Zaonezhye, *Sclerophora coniophaea* seems to often grow on snags of old birches, but it occasionally grows also on other substrate, including dead wood and bark. It was found at 25 sites in old-growth swamp forests, old herb-rich forests and forests along brooks. However, *Chaenotheca gracilenta* (syn. *Cybebe gracilenta*) grows almost exclusively on decaying stumps in the moist conditions of swamp forests and moist old-growth forests. It was observed at more than ten sites in Zaonezhye. Only a few indicator lichens species are typical for downed logs. *Cladonia norvegica* is common on soft, wind fallen spruce logs in forests with pristine characteristics throughout the peninsula. In places, *Icmadophila ericetorum* grows on the sides of large, relatively soft spruce and pine logs. *Multiclavula mucida* is an easy species to identify. It has a permanent green thallus that normally covers several decimeters of large, fallen and decaying aspen trunks. Unlike many other lichens, it belongs to basidiomycota and its fruiting bodies are short-lived, whitish clubs arising from the thallus. *Multiclavula mucida* grows in various places in Zaonezhye, mainly in herb-rich mixed forests with large aspen trees.

![Fig. 3. Multiclavula mucida (Photo: Kimmo Syrjänen).](image-url)
Cladonia parasitica prefers more sun-exposed conditions than the above species. It is mainly found from downed pine logs and stumps in dry heath pine forests or rocky forests. The ecology of Lecidea botryosa is similar, although it grows also on dry wood of spruce. In suitable habitats, both of these species seem to be relatively common in Zaonezhye. Pyrrhospora elabens is a more rare lichen indicator in Zaonezhye. It prefers snags of large old pines in sun-exposed environments. The species has been found from old, dry pine forests in western parts of Zaonezhye.

In Zaonezhye, dead, standing pine trees and snags are common at bogs and mire margins. Shiny black spikes of Calicium denigratum are typically found on dry pine-wood in these habitats. In Zaonezhye it is quite often accompanied by Chaenothecopsis fennica, which has a similar ecology to Calicium denigratum but grows also on spruce wood in the same habitats. Both of these indicator species are relatively frequent at bog and mire margins in the area.

Bogs are also home for Evernia mesomorpha, which mainly grows on twigs and trunks of stunted pines, birches and spruces in open bogs, but sometimes also on the branches of dead trees. The species grows in several bogs in Zaonezhye, although it is not abundant.

Basic and siliceous cliffs

Carboniferous rocks of Mount Sypun are important for lichens as well as for bryo-phytes. The site seems to have a very rich lichen flora of basic rocks, including e.g. Collema fuscovirens, Collema polycarpon, Fuscosparannaria leucophaea (syn. Vahliella leucophaea), Leptogium plicatile, Neofuscella verruculifera (syn. Xanthoparmelia verruculifera), Peltigera lepidophora, P. leucophlebia, P. venosa and Xanthoria sorediata. Also Lobaria scrobiculata grows there (Fadeeva 2013). The conservation value of this rocky area is very high.

Especially one site on a siliceous rock outcrop in Zaonezhye is worth mentioning. The site is situated east of the village of Lipovitsy, not far from the shores of Lake Onega. It is an east-facing, bare siliceous cliff wall with coarse talus scree beneath it. There is an open oligotrophic mire in front of the cliff. The cliff wall has a typical lichen flora of siliceous oligotrophic rocks, including Chrysothrix chlorina, Ramalina pollinaria, Parmelia fraudans, Alectoria sarmentosa and Hypogymnia vitifera. However, there is more interesting lichen flora on boulder scree, including Cladonia amaurocraea and a large population of Thamnolia vermicularis, which grows on the sides and tops of the boulders. The distribution of this lichen species is mainly Arctic-alpine, although it can be found in some remote locations on lowlands, especially in coastal areas. Nephroma arctica grows towards the southern end of the cliff.

Fig. 4. Thamnolia vermicularis (Photo: Kimmo Syrjänen).
Discussion

Our inventories revealed several hotspots of pristine-like old-growth forests in larger or smaller patches as well as other types of environments that are important for lichens, including basic and siliceous rock outcrops. These short inventories revealed 1141 locations of red-listed and indicator lichens in Zaonezhye. It is evident that the species composition and the potential for conservation of biodiversity in Zaonezhye are much higher than have previously been thought.

The diverse species composition of lichens is probably due to various reasons. There are still quite large old-growth forests, with a continuity of dead wood, remote from old villages. The bogs and mires of Zaonezhye are mostly intact, and drained bogs and mires are an exception. There are often wide transition zones between the margins of peat-forming ecosystems and the forests on mineral soil, which have not been used in active forestry. Swamps forests are common in Zaonezhye. These areas have a large number of tree species, old and dead trees as well as a suitable, moist microclimate. Some of the old traditional landscapes and grazed forests close to the villages, which were more open in the past, now have old deciduous trees. For many epiphyte lichens and species of dead wood, the landscapes form a connected network of suitable habitats. Zaonezhye provides an opportunity to maintain this valuable flora by making forest conservation areas and developing green corridors to connect them. Also peatlands and waterways could be used when building connections between larger conservation areas.

REFERENCES

Andersson, L., Alexeeva, N.M. & Kuznetsova, E. S. (eds.) 2009. Андерссон Л., Алексеева Н. М., Кузнецова Е. С. Выявление и обследование биологически ценных лесов на Северо-Западе Европейской части России [Survey of biologically valuable forests in North-Western European Russia. Vol 2. – Identification manual of species to be used during survey at stand level]. St-Petersburg. 258 p.

Table 1. Red listed and indicator lichens of Zaonezhye. Presence of species in Karelian (KAR) and Finnish (FIN) Red Data Books is shown in the first column (Ivanter & Kutznetsov 2007, Rassi et al. 2010). Their role as indicator (IND) of valuable forest habitats is shown in the second column (based on Andersson et al. 2009) and number of observations in the third column. Also some other lichen species with indicator characteristics are included in table. Table is based on observations by the authors in 2012–2013 and literature information (Fadeeva 2013, Fadeeva & Kravchenko 2013, Tolpysheva et al. 2001). Table includes only recent observations of valuable species; historical records are available in chapter 3.3.

<table>
<thead>
<tr>
<th>Species name</th>
<th>Red Listed</th>
<th>Indicator species</th>
<th>Number of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alectoria sarmentosa</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>11</td>
</tr>
<tr>
<td>Anaptychia ciliaris</td>
<td>KAR</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Arthonia leucopellae</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>6</td>
</tr>
<tr>
<td>Arthonia spadicea</td>
<td>FIN</td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Arthonia vinosa</td>
<td>KAR, FIN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bacidia rubella</td>
<td>FIN</td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Bryoria fremontii</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>4</td>
</tr>
<tr>
<td>Bryoria nadovnikiana</td>
<td>KAR, FIN</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Calicium denigratum</td>
<td>FIN</td>
<td>IND</td>
<td>17</td>
</tr>
<tr>
<td>Chaenotheca brachypoda</td>
<td>IND</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Chaenotheca chlorellia</td>
<td>FIN</td>
<td>IND</td>
<td>8</td>
</tr>
<tr>
<td>Chaenotheca gracilenta</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>14</td>
</tr>
<tr>
<td>Chaenotheca gracillima</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>4</td>
</tr>
<tr>
<td>Chaenotheca laevigata</td>
<td>FIN</td>
<td>IND</td>
<td>3</td>
</tr>
<tr>
<td>Chaenotheca stemonea</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Chaenotheca subroscida</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>4</td>
</tr>
<tr>
<td>Chaenothecopsis fennica</td>
<td>FIN</td>
<td>IND</td>
<td>8</td>
</tr>
<tr>
<td>Cladonia decoricata</td>
<td>KAR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cladonia norvegica</td>
<td>FIN</td>
<td>IND</td>
<td>12</td>
</tr>
<tr>
<td>Cladonia parasitica</td>
<td>FIN</td>
<td>IND</td>
<td>53</td>
</tr>
<tr>
<td>Coenogium pineti</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Collema flaccidum</td>
<td></td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Collema fragrans</td>
<td>FIN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Collema furfuracea</td>
<td>FIN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Collema fuscovirens</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Collema polycarpon</td>
<td>FIN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Collema subnigrescens</td>
<td>FIN</td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Evernia divaricata</td>
<td>KAR, FIN</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Evernia mesomorpha</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Fuscopannaria leucophaea</td>
<td></td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Graphis scripta</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Gyalecta truncigena</td>
<td>FIN</td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Gyalecta ulmi</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Hypogymnia vittata</td>
<td></td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Icmadophila ericetorum</td>
<td></td>
<td>IND</td>
<td>11</td>
</tr>
<tr>
<td>Lecanactis abietina</td>
<td>KAR</td>
<td>IND</td>
<td>3</td>
</tr>
<tr>
<td>Lecidea botryosa</td>
<td></td>
<td>IND</td>
<td>18</td>
</tr>
<tr>
<td>Leptogium lichenoides</td>
<td>FIN</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Leptogium plicatilise</td>
<td>FIN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Leptogium saturninum</td>
<td>FIN</td>
<td>IND</td>
<td>89</td>
</tr>
<tr>
<td>Leptogium teretiusculum</td>
<td>FIN</td>
<td>IND</td>
<td>7</td>
</tr>
<tr>
<td>Lobaria pulmonaria</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>518</td>
</tr>
<tr>
<td>Lobaria scrobiculata</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>3</td>
</tr>
<tr>
<td>Lopodium disciforme</td>
<td>FIN</td>
<td>IND</td>
<td>8</td>
</tr>
<tr>
<td>Melanelia subaurifera</td>
<td>KAR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Microcalicium disseminatum</td>
<td></td>
<td>IND</td>
<td>6</td>
</tr>
<tr>
<td>Multiclavula mucida</td>
<td>FIN</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Neofuscelia verruculifera</td>
<td>KAR, FIN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lichen Species</td>
<td>Location</td>
<td>Code</td>
<td>Number</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Nephroma arcticum</td>
<td>IND</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nephroma bellum</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>36</td>
</tr>
<tr>
<td>Nephroma parile</td>
<td>IND</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Nephroma resupinatum</td>
<td>FIN</td>
<td>IND</td>
<td>6</td>
</tr>
<tr>
<td>Pannaria puziozoides</td>
<td>IND</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Parmeliella triptophylla</td>
<td>FIN</td>
<td>IND</td>
<td>12</td>
</tr>
<tr>
<td>Parmelina tiliacea</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Peltigera collina</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Peltigera scabrosa</td>
<td>IND</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Peltigera venosa</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Plectocarpon lichenum</td>
<td>FIN</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pyrrhospora labens</td>
<td>FIN</td>
<td>IND</td>
<td>3</td>
</tr>
<tr>
<td>Psilolechia clavulifera</td>
<td>KAR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ramalina baltica</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Ramalina dilacerata</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>3</td>
</tr>
<tr>
<td>Ramalina sinensis</td>
<td>FIN</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sclerophora coniophasa</td>
<td>KAR, FIN</td>
<td>IND</td>
<td>25</td>
</tr>
<tr>
<td>Sclerophora pallida</td>
<td>FIN</td>
<td>IND</td>
<td>1</td>
</tr>
<tr>
<td>Thamnolia vermicularis</td>
<td>KAR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Usnea barbata</td>
<td>KAR, FIN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Usnea chaetophora</td>
<td>FIN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Usnea glabrescens</td>
<td>FIN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Usnea lapponica</td>
<td>FIN</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Aphyllophoroid fungi of Zaonezhye Peninsula

Anna Ruokolainen* and Olli Manninen**

* Forest Research Institute of the Karelian Research Center of Russian Academy of Sciences
11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
E-mail: anna.ruokolainen@krc.karelia.ru
** Olli Manninen, Luonto-Liitto, Annankatu 26 A, 00100 Helsinki, Finland

Introduction

Zaonezhye Peninsula is dominated by green-moss spruce forests. Also nemoral species grow in these forests, and thus the forests have features of southern taiga forests. In the past most of the areas on Zaonezhye Peninsula formerly covered with pristine spruce-dominated forests were cleared for slash-and-burn cultivation to give way to pastures, ploughland and meadows as well as secondary mixed forests (Kuznetsov et al. 1999).

Mycological studies in Zaonezhye Peninsula and adjacent areas

Mycological studies in Zaonezhye were carried out between 1996 and 1998 by the Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk (FRI) and V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg (BIN RAS) (Bondartseva et al. 2000). In 1996 and 1998, Margarita Bondartseva, Vera Kotkova (Lositskaya), Vitaly Krutov and Svetlana Kiviniemi conducted research on the Kizhi and Gogolev islands. In 1997, Anna Ruokolainen carried out studies on Bolshoi Klimenetsky Island Between 2010 and 2013, Anna Ruokolainen continued her studies, in cooperation with the Finnish specialists Olli-Pekka Turunen, Olli Manninen and Jyri Mikkola, on Bolshoi Lelikovsky Island and other parts of Zaonezhye Peninsula (in the vicinity of the villages of Vegoruksa, Velikaya Guba, Velikaya Niva, Kuzaranda, Lipovitsy, Polya, Tambitsy, Tipinitly and Shun’ga as well as lakes Vanchozero and Kosmozero). In 2012, fungi were studied on Kizhi Island and near the villages of Zharnikovo, Malkovo, Zubovo and Podyelniki with the initiative and support of the Kizhi museum-reserve. Samples from Zaonezhye Peninsula and the Kizhi archipelago are stored in the herbaria of BIN RAS (LE) and FRI (PTZ).
Data from previous decades are very sparse. The herbarium of the University of Helsinki contains two samples from Kizhi Island collected by W. Nyberg in 1863 and three samples taken by Pertti Uotila in 1991 (Bondartseva et al. 1999).

According to the geobotanical zonation of Karelia (Mela & Cajander 1906), Zaonezhye Peninsula forms a part of the province of *Karelia onegensis* (*Kon*). Administratively, it belongs to the Medvezhyegorsk municipality of the Republic of Karelia. As a result of the mycological studies, a total of 360 aphyllophoroid fungus species have been reported from the province of *Kon* (which is the greatest number of species reported in any of the provinces in the Republic of Karelia) and 264 aphyllophoroid fungus species from the Medvezhyegorsk District (Bondartseva et al. 1999, Bondartseva et al. 2000, Lositskaya et al. 2001; Ruokolainen 2013 a, b, c).

So far a relatively small number of fungus species has been recorded from the Kizhi archipelago. On one hand, this is due to intensive economic activities and the resulting changes in vegetation. On the other hand, the islands have been poorly studied in the past. There are records of 43 species from Bolshoi Klimenetsky Isl. (Bondartseva et al. 2000), 37 species from the Kizhi and Gogolev islands (Ruokolainen 2013 b) and 24 species from Bolshoi Lelikovsky Island (Ruokolainen, unpublished).

Fig. 1. Anna Ruokolainen collecting polypores on dead wood. Forest near Lipovitsy village 23.08.2013 (Photo Jevgeni Jakovlev).

Results

To date, 233 aphyllophoroid fungus species of 113 genera, 38 families and 14 orders have been recorded from Zaonezhye Peninsula and the Kizhi archipelago. The most
numerous order Polyporales contains 109 species of 49 genera and 7 families. Less numerous orders include Hymenochaetales (41 species of 13 genera and 3 families) and Russulales (21, 14 and 8 species, respectively). The orders Polyporales and Hymenochaetales consist basically of 5 families: Polyporaceae (35 species), Hymenochaetales (24), Merulipodiacaeae (30), Merulaceae (23) and Schizoporaceae (14 species), which in turn consist of 126 species that make up 54% of all the aphyllorophoid fungus species known from the peninsula. The most numerous genera are Phellinus (14 species), Hymenodontia (12 species), Postia (10 species), Antrodia (9 species), Skeletocutis (7 species), Phlebia, Tomentella (6 species each), Polyporus, Trametes (5 species each), Antrodia, Pluteus, Stereum, Trichaptum (4 species each). Nomenclature follows Index Fungorum (2014).

Ninety-four species were found on conifers; 70 species were discovered on spruce (Picea abies and P. obovata) and 49 species on pine (Pinus sylvestris). A hundred species were found on deciduous tree species; 61 species were discovered on aspen (Populus tremulae), 40 on birches (Betula pendula and B. pubescens), 28 on alders (Alnus incana и A. glutinosa), 22 on willow (Salix caprea), 19 on mountain ash (Sorbus aucuparia) and 5 species on elms (Ulmus laevis, U. glabra).

Growing on soil and litter, there were 25 species of the genera Albatrellus, Bankera, Boletopsis, Cantharellus, Clavariadelphus, Clavulinia, Coltricia, Craterellus, Hydnellum, Leptoporus, Mellea, Phellodon, Ramara, Sarcodon and Thelephora.

Sixty-three species found in Zaonezhye are indicators of old-growth forests. These species are confined to the distinctive conditions of forest communities least affected by human activities (Albatrellus confluens, Amylocorticium subincarnatum, Amylocystis lapponica, Anomoporia kamchatica, Antrodia albobrunnea, A. crassa, A. pulvinascens, Antrodia citrinella, Asterodon ferruginosus, Bankera fulgineoalba, Boletopsis grisea, Chaetoderma luna, Clavariadelphus pistillaris, Climacocystis borealis, Crustoderma corneum, C. dryinum, Dichomitus squalens, Diplomitoporus crustulinus, Fomitopsis rosea, Ganoderma lucidum, Gloeoporus pannocinctus, G. taxicola, Gloiodon strigosus, Haploporus odoratus, Hericium coralloides, Junghuhnia collabens, J. luteoalba, J. pseudozilingiana, Kavinia alboviridis, K. mollis, Leptoporus mollis, Onnia leporina, Perenniporia subacida, Phaeolus schweinitzii, Phellinus chrysoloma, Ph. ferrugineofuscus, Ph. lundellii, Ph. nigromycinatus, Ph. pini, Ph. populicola, Ph. viatica, Phellodon niger, Phlebia centrifuga, Ph. serialis, Piloporia sajanensis, Polyporus badius, P. pseudobetulinus, Postia guttulata, P. lateritia, P. undosa, Pseudomerulius aureus, Pycnoporellus alboluteus, P. fulgens, species of the genus Ramaria, Rhodonia placentia, Rigidoporus crocatus, Serpula himantoides, Sidera lenis, Skeletocutis odora, Sk. stellae, Tomentella crinalis, Trametes suaveolens, Tyromyces fissilis). The above species indicate that these ecosystems are valuable and should be protected (Kotiranta & Niemelä 1996; Andersson et al. 2009).

Twenty-one species, listed in the Red Data Book of the Republic of Karelia (2007), including Antrodia crassa, A. pulvinascens, Antrodia citrinella, Aurantiporus fissilis, Clavariadelphus pistillaris, Craterellus cornucopioides, Dichomitus squalens, Elmerina caryae, Ganoderma lucidum, Gloioidon strigosus, Haploporus odoratus, Hericium coralloides, Junghuhnia collabens, J. pseudozilingiana, Kavinia alboviridis, Leptoporus mollis, Piloporia sajanensis, Polyporus pseudobetulinus, Radulodon erikssonii, Rigidoporus crocatus, Sidera lenis and Tomentella crinalis were reported from the study area.

In addition, 40 species, classified as VU (10 species), NT (25 species) and EN (5 species), were listed in the 2010 Red list of Finnish species (Rassi et al 2010). The species Amylocorticium subincarnatum, Amylocystis lapponica, Boletopsis grisea, Ceriporia excelsa, Crustoderma corniculatum, C. dryinum, Diplomitoporus crustulinus, D. flavescens, Fomitopsis rosea, Odontium romellii, Perenniporia subacida, Phlebia centrifuga, Polyporus badius, Postia guttulata, P. lateritia, Pycnoporellus alboluteus, Scytinostroma galactinum, Skeletocutis brevispora, Sk. odora, Sk. stellae, Trametes suaveolens, Trichaptum laricinum...
and *T. pargamenum* have not yet been granted a protected status in Russia, although they are already protected in neighboring countries.

Species confined to pine

Pine trees provide a number of habitats for fungi that colonize both living and dead trunks, snags, fallen logs and twigs at different stages of decay. In 2013, *Phellinus pini* was the most abundant fungal species found on pine throughout the southern part of the peninsula (120 records). The second most abundant species (in terms of frequency) was *Diplomitoporus flavescens*, which was found on standing, dead pine trunks. On fallen dead pines, the most abundant fungal species were *Antrodia albobrunnea, Chaetoderma luna, Crustoderma corneum, Postia lateritia, P. undosa* (which can colonize spruce as well) and *Pseudomerulius aureus*. On soil litter, we found *Albatrellus confluentens, Bankera fulgineoalba, Phaeolus schweinitzii, Phellodon niger,* and several species of the genus *Ramaria*. The species growing on soil and litter include both mycorrhizal and humus saprotrophic fungi. These species are most abundant in old-growth pine forests, whereas in secondary pine forest they are usually rare.

Species confined to spruce

There are several indicator species of natural forests growing on spruce. Many of them are also red-listed. In 2013, the most abundant of these species were: *Fomitopsis rosea* (350 sites), *Phellinus chrysoloma* (more than 90 sites), *Pycnoporellus fulgens* (more than 80 sites), *Phlebia centrifuga* (ca. 80 sites), *Amylocystis lapponica* (more than 70 sites), and *Phellinus viticola* (more than 50 sites). Less abundant species included *Climacocystis borealis*, *Asterodon ferruginosus*, *Crustoderma corneum*, *Gloeoporus pannocinctus*, *Hericium coralloides*, *Leptoporus mollis*, *Onnia leporina*, *Phellinus nigrolimitatus*, *Rhodonia placenta*, and *Skeletocutis odora*. Finally, some indicator species and threatened species were found only on a few sites (less than 10 sites), e.g. *Anomoporia kamtschatica*, *Antrodia infirma, A. pulvinascens, Antrodiella citrinella, Clavariadelphus pistillaris, Diplomitoporus crustulinus, Gloeoporus tayscola, Gloioodon strigosus, Haploporus odorus, Junghuhnia collabens, J. luteoalba, Pycnoporellus alboluteascens, Sidera lenis, Skeletocutis chrysella, Sk. papyracea, Sk. stellae* and *Trametes suaveolens*.

Species confined to aspen

Aspen trunks are usually covered with epiphytic lichens, which can in turn be succeeded by various species of fungi. Some of these fungi are parasitoids that colonize other fungal species. For instance, large fruiting bodies of *Phellinus tremulae* are often colonized by *Junghuhnia pseudozilingiana*, which is considered an indicator species of old-growth forests and is therefore included in the Red Books of Karelia (2007) and Finland (Rassi et al. 2010). In 2013, this species was recorded from 10 sites in the southern part of Zaonezhye Peninsula. In addition, *Tomentella crinalis* and *Polyporus badius* have been found in some sites on fallen aspen logs at different stages of decay. The former is included in the Red Book of Karelia (2007), while the latter has become rare in Finland and Sweden. *Phellinus populinola*, which is considered rare in Sweden (Artdatabanken 2010), was recorded in 2013 from approximately 90 sites in the southern part of Zaonezhye Peninsula.
The most noteworthy findings of threatened and rare species of saproxylic fungi

Antrodia crassa (P. Karst.) Ryvarden found in the end of Syar peninsula, Compartment 187, old-growth pine-dominated forest (19.08.2013, Olli Manninen leg.). This is maybe the most exclusive species confined the best pine forests preserved in the area. This finding must also be one of the southernmost findings in Fennoscandia.

Ceriporia excelsa S. Lundell ex Parmasto was found on a wind-fallen deciduous tree in a small-leaved thicket on Kizhi Island. This is the first finding of this relatively rare, southern species in the Republic of Karelia. It is also encountered in the adjacent Leningrad and Arkhangelsk Regions as well as in the Komi Republic. *Ceriporia excelsa* is a common species in Europe and North America. It is classified as NT in the 2010 Red list of Finnish species (Rassi et al. 2010) and in Sweden (Artdatabanken 2010).

Ganoderma lucidum (M. A. Curtis : Fr.) P. Karst. was found on a drying birch trunk in a mixed forest in the vicinity of the village of Tipintsy. In the Republic of Karelia, this is the first finding of the species in the Medvezhyegorsk District as well as in the Kron province. There have been sparse reports of the species from the KL province in the Sortavala District (on a larch stump in a plantation on Valaam Island) and the Kton province in the Pudozh District (on a wind-fallen alder tree in the Vodlozero National Park). *Ganoderma lucidum* is common in southern Russia, but less common in middle latitudes. It occurs widely in Europe (except for northern Scandinavia and Finland), Asia, North Africa and North America. In the Red Data Book of the Republic of Karelia (2007) the species was classified as VU. It is also included in the Red Data Book of the Russian Federation (2008) as well as regional Red Data Books.

![Ceriporia excelsa](Photo Anna Ruokolainen).
Kavinia alboviridis (Mordan) Gilb. et Budington. One finding on old dry pieces of dead spruce (under an old living spruce) northwest of the Vatnavolok village, Syar peninsula (Compartment 134). There are sparse records of the species in the Republic of Karelia and it is only known from the Muezersky District and the environs of the Kostomuksha nature reserve. Kavinia alboviridis is classified as DD in the Red Data Book of the Republic of Karelia (2007).

Junghuhnia pseudozilingiana (Parmasto) Ryvarden was found in several parts of Zaonezhye Peninsula. It grows in mixed forests with old aspen trees, colonized and inhabited by the fungus Phellinus tremulae. The species is classified as DD in the Red Data Book of the Republic of Karelia (2007) and the Red Nature Data Book of the Leningrad Region (2000), and VU in the 2010 Red list of Finnish species (Rassi et al. 2010). Junghuhnia pseudozilingiana occurs widely in Europe.
Piloporia sajanensis (Parmasto) Niemelä found in the vicinity of Uzkaya Salma village, Compartment 26 of Kizhi forestry unit. Moist spruce-dominated forest, 28.06.2013 (Olli Manninen leg.). This must be one of the southernmost findings of this rare species that is dependent on Trichaptum laricinum.

Pycnoporellus alboluteus (Ellis et Everh.) Kotl. et Pouzar. Two new records South from Velikaya Guba village, at the western part of peninsula, Compartment 9 of Kizhi forestry unit in old-growth spruce forests with very much dead wood in all stages (Olli Maninen and Timo Kuuluvainen legs). This is the first finding of the species in the Republic of Karelia. The species is classified as EN in the 2010 Red list of Finnish species (Rassi et al. 2010) and CR in Sweden (2010). Pycnoporellus alboluteus occurs widely in Europe, Caucasus, Asia and North America.

Rigidoporus crocatus (Pat.) Ryvarden was found on wind-fallen trunks of birch, alder and spruce trees in birch, motley grass-spruce and mixed forests near the villages of Zharnikovo, Lipovitsy, Polya and Tambitsy as well as on Bolshoi Klimenetsky Isl.. There are also a few reports of the species from Kondopoga and Pudozh Districts in the Republic of Karelia. The species is classified as VU in the Red Data Book of the Republic of Karelia (2007). It is also listed in the Red Nature Data Book of the Leningrad Region (2000) and classified as EN in the 2010 Red list of Finnish species (Rassi et al. 2010). Although Rigidoporus crocatus is rare here, it is common in other parts of Europe and North America.

Tomentella crinalis (Fr.) M.J. Larsen was found on a wind-fallen trunk of an aspen tree in a mixed forest near the villages of Tambitsy and Tipinitsy. In the Republic of Karelia, it is also found in Muezersky and Kondopoga Districts. The species is classified as NT in the Red Data Book of Karelia (2007). Tomentella crinalis also occurs in the Leningrad and Arkhangelsk Regions.

The predominance of species growing on deciduous trees indicates that the ecosystems of Zaonezhye have been transformed. However, a large number of species have been found on spruce and pine, which are the main forest-forming species. Further mycological studies and monitoring should be conducted in rocky pine forests, coastal
spruce forests and spruce forest patches along streams, as well as in old aspen forests. The large amount of rare and indicator species testifies to the importance of preserving and restoring ecosystems and habitats of species that need protection.

Table 1. List of study sites, 2010–2013.

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Place of collection, compartment, forest type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.5605</td>
<td>35.08295</td>
<td>Bolshoi Lelikovsky Isl., pine forest</td>
<td>09/08/2010</td>
</tr>
<tr>
<td>61.560704</td>
<td>35.08214</td>
<td>Bolshoi Lelikovsky Isl., pine forest with spruce</td>
<td>09/08/2010</td>
</tr>
<tr>
<td>62.03355</td>
<td>35.03153</td>
<td>Recently fallen spruce trees; Bilberry spruce forest with aspen, south of the village of Uzkaya Salma</td>
<td>13/08/2010</td>
</tr>
<tr>
<td>62.03322</td>
<td>35.03274</td>
<td>Thick aspen trees (50-70 cm in diameter)</td>
<td>13/08/2010</td>
</tr>
<tr>
<td>62.03282</td>
<td>35.03251</td>
<td>Moist spruce forest with horsetail</td>
<td>13/08/2010</td>
</tr>
<tr>
<td>62.0259</td>
<td>35.04143</td>
<td></td>
<td>13/08/2010</td>
</tr>
<tr>
<td>62.08100</td>
<td>35.07234</td>
<td>Fallen trees (window dynamics)</td>
<td>11/08/2010</td>
</tr>
<tr>
<td>62.08094</td>
<td>35.07096</td>
<td>Lake shore</td>
<td>11/08/2010</td>
</tr>
<tr>
<td>62.07580</td>
<td>35.07131</td>
<td>Creek</td>
<td>11/08/2010</td>
</tr>
<tr>
<td>62.07576</td>
<td>35.07101</td>
<td>Rock</td>
<td>11/08/2010</td>
</tr>
<tr>
<td>62.20998</td>
<td>35.08238</td>
<td>Rock</td>
<td>17/08/2010</td>
</tr>
<tr>
<td>62.23095</td>
<td>35.05072</td>
<td>Mixed forest near a ridge</td>
<td>17/08/2010</td>
</tr>
<tr>
<td>62.23077</td>
<td>35.05072</td>
<td>Rocky pine forest</td>
<td>17/08/2010</td>
</tr>
<tr>
<td>62.22324</td>
<td>35.05524</td>
<td>Lake shore</td>
<td>17/08/2010</td>
</tr>
<tr>
<td>62.04187</td>
<td>35.06582</td>
<td>Compartment 63, unit 20, spruce forest near a logging area</td>
<td>18/08/2010</td>
</tr>
<tr>
<td>62.4181</td>
<td>35.07116</td>
<td>Compartment 63, unit 20, spruce forest near a logging area</td>
<td>18/08/2010</td>
</tr>
<tr>
<td>62.04181</td>
<td>35.07116</td>
<td>Pine forest with aspen and spruce</td>
<td>18/08/2010</td>
</tr>
<tr>
<td>62.15156</td>
<td>35.00375</td>
<td>Bilberry spruce forest</td>
<td>19/08/2010</td>
</tr>
<tr>
<td>62.12589</td>
<td>35.54187</td>
<td>Bilberry motley-grass pine forest</td>
<td>19/08/2010</td>
</tr>
<tr>
<td>62.13394</td>
<td>35.58162</td>
<td>Pine forest</td>
<td>19/08/2010</td>
</tr>
<tr>
<td>62.17287</td>
<td>35.15553</td>
<td></td>
<td>08/08/2011</td>
</tr>
<tr>
<td>62.10552</td>
<td>35.26476</td>
<td>South of Tambitsy, spruce forest</td>
<td>04/08/2011</td>
</tr>
<tr>
<td>62.10547</td>
<td>35.21341</td>
<td>South of Tambitsy, spruce forest</td>
<td>04/08/2011</td>
</tr>
<tr>
<td>62.10393</td>
<td>35.20512</td>
<td>Spruce forest with overmature birch forest nearby</td>
<td>04/08/2011</td>
</tr>
<tr>
<td>62.11019</td>
<td>35.19156</td>
<td>Birch forest with spruce undergrowth</td>
<td>04/08/2011</td>
</tr>
<tr>
<td>62.16483</td>
<td>35.19158</td>
<td>Mixed forest</td>
<td>05/08/2011</td>
</tr>
<tr>
<td>62.20142</td>
<td>35.11240</td>
<td>Overmature motley grass-bilberry-shamrock spruce forest</td>
<td>05/08/2011</td>
</tr>
<tr>
<td>62.20091</td>
<td>35.11010</td>
<td>Overmature aspen forest with spruce and birch</td>
<td>05/08/2011</td>
</tr>
<tr>
<td>62.20576</td>
<td>35.12281</td>
<td>Spruce forest near a logging area</td>
<td>05/08/2011</td>
</tr>
<tr>
<td>62.14408</td>
<td>35.33061</td>
<td>Motley grass birch forest with aspen and spruce</td>
<td>06/08/2011</td>
</tr>
<tr>
<td>62.66532</td>
<td>35.34077</td>
<td>Overmature spruce forest with aspen and birch</td>
<td>06/08/2011</td>
</tr>
<tr>
<td>62.15192</td>
<td>35.34179</td>
<td>Selective cutting area in green moss spruce forest with aspen</td>
<td>06/08/2011</td>
</tr>
<tr>
<td>62.1772</td>
<td>35.34074</td>
<td>East shore, south of Kuzaranda, spruce forest with aspen</td>
<td>07/08/2011</td>
</tr>
<tr>
<td>62.17527</td>
<td>35.34392</td>
<td>Aspen forest</td>
<td>07/08/2011</td>
</tr>
<tr>
<td>62.17446</td>
<td>35.34180</td>
<td>Spruce forest</td>
<td>07/08/2011</td>
</tr>
<tr>
<td>62.1772</td>
<td>35.34074</td>
<td>Pine forest</td>
<td>08/08/2011</td>
</tr>
<tr>
<td>62.25191</td>
<td>35.08184</td>
<td>Rocky pine forest</td>
<td>08/08/2011</td>
</tr>
<tr>
<td>62.25193</td>
<td>35.07515</td>
<td>Spruce forest with fallen trees (window dynamics)</td>
<td>08/08/2011</td>
</tr>
<tr>
<td>62.30067</td>
<td>34.93836</td>
<td>Environs of Velikaya Niva</td>
<td>23/08/2012</td>
</tr>
</tbody>
</table>
62.1162 35.030734 A ridge between lakes 23/08/2012
62.62897 34.55234 Lake Vanchezero 22/08/2012
62.238002 34.88029 south of the village of Lambsruchei, Lake Onega shore 24/08/2012
62.497863 34.76967 south of the village of Lambsruchei, Lake Onega shore, a ridge 24/08/2012
62.53639 34.82289 Lake Kosmozero 25/08/2012
62.131227 35.093334 Lipovitsy, spruce forest with aspen and fallen spruce 21/08/2013
62.1849 35.57008 north of Tambitsy, environs of Tolsty Navolok, mixed and spruce forest, compartment 71 26/08/2013
62.17725 35.3571 Tipintysy, spruce forest 27/08/2013
62.24515 35.49294 Tambitsy, motley grass spruce forest 28/08/2013
62.2418 35.49248 Tambitsy, spruce forest with aspen 28/08/2013

REFERENCES

Table 2. Numbers of wood-growing fungal species recorded on Zaonezhye Peninsula (nomenclature according to Index Fungorum 2014).

<table>
<thead>
<tr>
<th>Order/Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricomycetes</td>
<td></td>
</tr>
<tr>
<td>Incertae sedis</td>
<td>Odonticium (1)</td>
</tr>
<tr>
<td>Agaricales</td>
<td></td>
</tr>
<tr>
<td>Cyphellaceae</td>
<td>Chondrostereum (1)</td>
</tr>
<tr>
<td>Incertae sedis</td>
<td>Picatura (1)</td>
</tr>
<tr>
<td>Atheliales</td>
<td></td>
</tr>
<tr>
<td>Atheliaceae</td>
<td>Amphinema (1), Piloderma (1)</td>
</tr>
<tr>
<td>Auriculariales</td>
<td></td>
</tr>
<tr>
<td>Auriculariaceae</td>
<td>Elmerina (1)</td>
</tr>
<tr>
<td>Incertae sedis</td>
<td>Pseudohydnum (1)</td>
</tr>
<tr>
<td>Boletales</td>
<td></td>
</tr>
<tr>
<td>Amylocorticiaceae</td>
<td>Amylocorticium (2), Ceroseomyces (2)</td>
</tr>
<tr>
<td>Coniophoraceae</td>
<td>Coniophora (2)</td>
</tr>
<tr>
<td>Serpulaceae</td>
<td>Serpula (1)</td>
</tr>
<tr>
<td>Tapinellaceae</td>
<td>Pseudomerulius (1)</td>
</tr>
<tr>
<td>Cantharellales</td>
<td></td>
</tr>
<tr>
<td>Botryobasidiaceae</td>
<td>Botryobasidium (3), Botryahypochocus (1)</td>
</tr>
<tr>
<td>Cantharellaceae</td>
<td>Cantharellus (1), Clavulina (1), Craterellus (2)</td>
</tr>
<tr>
<td>Clavulinaceae</td>
<td>Multiclavula (1)</td>
</tr>
<tr>
<td>Hydnaceae</td>
<td>Hydnunm (2), Sistotrema (1)</td>
</tr>
<tr>
<td>Corticalea</td>
<td></td>
</tr>
<tr>
<td>Corticiaceae</td>
<td>Corticum (1), Cytidia (1)</td>
</tr>
<tr>
<td>Dacrymycetales</td>
<td></td>
</tr>
<tr>
<td>Dacrymycetaceae</td>
<td>Calocera (1)</td>
</tr>
<tr>
<td>Gloeophyllales</td>
<td></td>
</tr>
<tr>
<td>Gloeophyllaceae</td>
<td>Gloeophyllum (2), Veluticeps (1)</td>
</tr>
<tr>
<td>Gomphales</td>
<td></td>
</tr>
<tr>
<td>Clavariadelphaceae</td>
<td>Clavariadelphus (2)</td>
</tr>
<tr>
<td>Gomphaceae</td>
<td>Ramaria (3)</td>
</tr>
<tr>
<td>Lentariaceae</td>
<td>Kavinia (1), Lentaria (1)</td>
</tr>
<tr>
<td>Hymenochaetales</td>
<td></td>
</tr>
<tr>
<td>Hymenochaetae</td>
<td>Asterodon (1), Coltricia (1), Hymenochaete (1), Inonotus (3), Onnia (1), Phellinus (14), Pseudochaete (1), Tubulicrinis (2)</td>
</tr>
<tr>
<td>Repetobasidiaceae</td>
<td>Sidera (1), Resinicium (2)</td>
</tr>
</tbody>
</table>
Schizoporaceae
- Basidiaradulum (1), Hyphodonta (12), Schizopora (1)

Polyphorales

Fomitopsidaceae
- Amylocystis (1), Anomoporia (1), Antrobia (9), Climacocystis (1), Fomitopsis (2), Ischnoderma (1), Laetiporus (1), Phaeolus (1), Piptoporus (1), Postia (10), Pycnoporellus (2)

Ganodermataceae
- Ganoderma (2)

Meripilaceae
- Oxyporus (2), Physisporinus (1), Rigidoporus (1)

Meruliaceae
- Bjerkandera (1), Crustoderma (2), Gloeoporus (3), Hyphoderma (1), Junghuhnia (4), Merulius (1), Mycoacia (2), Phlebia (6), Radulodon (1), Steccherinum (2)

Phanerochaetaceae
- Antrodiella (4), Ceriporia (2), Ceriporiopsis (2), Phanerochaete (4), Phlebiopsis (1)

Polyporaceae
- Aurantiporus (1), Cerrena (1), Daedaleopsis (3), Datronia (1), Dichomitus (1), Diplomitoporus (2), Fomes (1), Hapalopilus (1), Haploporus (1), Lenzites (1), Leptoporus (1), Perenniporia (1), Pilopora (1), Polyporus (5), Pycnoporus (1), Rhodonia (1), Skeletonatus (7), Trametes (5), Trichaptum (4)

Xenasmataceae
- Phlebiella (1)

Russulales

Albatrellaceae
- Albatrellus (2)

Amylostereaceae
- Amylostereum (1)

Auriscalpiaceae
- Auriscalpium (1), Clavicorona (1)

Bondarzewiaceae
- Gloiodon (1), Heterobasidion (1)

Hericiaceae
- Hericium (2), Laxitextum (1)

Lachnocladiaceae
- Dichostereum (1), Scytinostroma (2)

Peniophoraceae
- Peniophora (2)

Stereaceae
- Chaetoderma (1), Gloiothele (1), Stereum (4)

Thelephorales

Bankeraceae
- Bankera (1), Boletopsis (1), Hydnellum (3), Phellodon (2), Sarcodon (3)

Thelephoraceae
- Thelephora (1), Tomentella (6)

Trechisporales

Hydnodontaceae
- Trechispora (2)
APPENDIX

List of fungi recorded from Zaonezhye Peninsula, Syar-Peninsula and adjacent islands

NOTES: Each species is provided by an estimation of frequency in Zaonezhye according to the following scale:
rr (very rare), **r** (rare), **str** (fairly rare), **p** (here and there), **stfq** (fairly frequent), **fq** (frequent and very frequent).
Species status: * - Indicator species of old-growth and deciduous forests (Kotiranta & Niemelä 1996);
** - Specialist and indicator species of minimally transformed forest (Andersson et al. 2009).
Threat status: EN, NT, VU, DD – species included in the Red Data Book of Karelia, **Kar** (Ivanter & Kuznetsov 2007) and in the 2010 Red list of Finnish species, Fin (Rassi et al. 2010);
2, 3, 4 - Species included in the Red Data Book of nature of Leningrad Region, **Len** (Red Data Book...2000).

A. ovinus (Schaeff.) Kotl. et Pouzar – Ruokolainen 2013 c; Lipovitsy, comp. 41, Lake Korbozero, Tipinitsy, spruce-dominated and mixed forest, on litter, 23.08.2013, 27.08.2013, A.V. Ruokolainen; str.

Amphynema byssoides (Pers. : Fr.) J. Erikss. – Ruokolainen 2013 c; pine forest, comp. 13, on fallen spruce, 22.08.2013; p.

Amylocorticium suaveolens Parmasto – Ruokolainen 2013 a, c; Velikaya Niva, motley grass spruce forest, on fallen spruce, 23.08.2012, A.V. Ruokolainen, PTZ; Tambitsy, Myrtillus spruce forest, on fallen spruce, 28.08.2013, A.V. Ruokolainen, PTZ; str.

A. subincarnatum (Peck) Pouzar – Ruokolainen 2013 c; spruce forest, on fallen spruce. Threat status: Fin – VU; str.

, ** **Amylocystis lapponica (Romell) Singer – Ruokolainen 2013 a, c; Lipovitsy; Lake Korbozero, Tipinitsy, north of Tambitsy, environs of Tolsty Navolok, comp. 71, Myrtillus spruce forest, on fallen spruce, 21.08.2013, 26.08.2013, 27.08.2013, A.V. Ruokolainen; str.

Antrodia albobrunnea (Romell) Ryvarden – Syar peninsula, comp. 180, 183, old-growth pine-dominated forest, on dead pine, 19.08.2013, O. Manninen; r. Threat status: Fin – VU.

*, ** **Anomoporia kantschatica** (Parmasto) Bondartseva – old-growth pine-dominated forest, on dead pine, 27.06.2013 and 22.08.2013, O. Manninen; rr.

Amylostereum chailletii (Pers.) Boidin – Ruokolainen 2013 a; Lipovitsy, comp. 41, Myrtillus spruce forest, on fallen spruce, 23.08.2013, A.V. Ruokolainen, PTZ; str.

*, ** **Amylostereum lapponicum** (Romell) Ryvarden – Syar peninsula, comp. 180, 183, old-growth pine-dominated forest, on dead pine, 19.08.2013, O. Manninen; r. Threat status: Kar – 2 (EN), Len – 2, Fin – EN.

A. heteromorpha (Fr. : Fr.) Donk – Syar peninsula, comp. 180, on aspen, 19.08.2013, O. Manninen; r.

A. pulvinascens (Pilát) Niemelä – Documentation ... 2013; Syar peninsula, comp. 181, 19.08.2013, 24.08.2013, O. Manninen; r. Threat status: Kar – 3 (VU), Fin – VU.

A. serialis (Fr.) Donk – Bondartseva et al. 1999; Ruokolainen 2013 c; southern part on Bol. Klim. Isl., spruce forest, on fallen spruce, 03.07.1997, A.V. Ruokolainen, PTZ; fq.

* A. hoehnelii (Bres.) Niemelä – mixed forest on deadwood of deciduous trees, 23.08.2013, O. Manninen; rr. Threat status: Len – 3.

A. pallasii Renvall, Johann. et Stenlid – Tambitsy, Myrtillus spruce forest, on fallen spruce, 27.08.2013, A.V. Ruokolainen, PTZ; r.

A. pallescens (Pilát) Niemelä et Miettinen – Ruokolainen 2013 c; Zharnikovo, mixed forest on fallen Sorbus aucuparia, 01.08.2012, A.V. Ruokolainen, PTZ; p.

* Asterodon ferruginosus Pat. – Ruokolainen 2013 c; Syar peninsula, comp. 178, 186, 18-19.08.2013, O. Manninen; Lipovitsy, comp. 41, north of Tambitsy, environs of Tolsty Navolok, comp. 71, 23.08.2013, 26.08.2013, 28.08.2013, spruce forest on fallen aspen, pine and spruce, A.V. Ruokolainen; pine forest, comp. 13, on fallen pine, 22.08.2013, A.V. Ruokolainen, PTZ, stp.

Auriscalpium vulgare Gray – near the road, 28.06.2013, O. Manninen; r.

** Bankera fuligineoalba (J.C. Schmidt) Coker et Beers ex Pouzar – Syar peninsula, comp. 185, pine forest, on litter, 19.08.2013, O. Manninen; r.

Basidioradulum radula (Fr.) Nobles – Ruokolainen 2013 c; Zharnikovo, mixed forest on deadwood of Sorbus aucuparia, 01.08.2012, A.V. Ruokolainen; Falozer, mixed forest, on deadwood of deciduous trees, 23.08.2012, A.V. Ruokolainen; p.

Bjerkandera adusta (Willd.: Fr.) P. Karst. – Bondartseva et al. 1999; Ruokolainen 2013 b, c; Kizhi Isl., H; Kizhi Isl., on deadwood of Sorbus aucuparia, 16.07.1998, V.I. Krutov, PTZ; Tipinitsy, spruce forest, on aspen, 27.08.2013; Tambitsy, spruce forest, on aspen, 28.08.2013, A.V. Ruokolainen; stfq.

** Boletopsis grisea (Peck) Bondartsev et Singer – Ruokolainen 2013 a; south of the village of Lambasruchei, pine forest, on litter, 23.08.2012, A.V. Ruokolainen; r. Threat status: Fin – NT.

Botryobasidium laeve (J. Erikss.) Parmasto – Ruokolainen 2013 c; north of Podyelniki, spruce forest, on fallen spruce; p.

B. subcoronatum (Höhn. et Litsch.) Donk – Ruokolainen 2013 c; north of Podyelniki, spruce forest, on fallen spruce; stp.

Botryohypochnus isabellinus (Fr.) J. Erikss. – Ruokolainen 2013 c; Zharnikovo, mixed forest, on dead Alnus incana, 01.08.2012, A.V. Ruokolainen; p.

Calocera viscosa (Pers.: Fr.) Fr. – Ruokolainen 2013 c; environs of Velikaya Niva, mixed spruce-dominated forest, on litter, 23.08.2012, A.V. Ruokolainen; p.

Cantharellus cibarius Fr. – Ruokolainen 2013 c; south of the village of Lambasruchei, pine forest, on litter, 23.08.2012, A.V. Ruokolainen; common species, stfq.
Ceraceomyces microsporus K.H. Larss. – Ruokolainen 2013 c; pine forest, near the lake, comp. 13, on fallen pine, 22.08.2013, A.V. Ruokolainen, PTZ; p.

C. serpens (Tode : Fr.) Ginn – Ruokolainen 2013 c; Paltega, motley grass birch forest, on fallen birch, 06.08.2011, A.V. Ruokolainen, PTZ; p.

Cerioporia excelsa S. Lundell ex Parmasto – Ruokolainen 2013 a, b, c; Kizhi Isl., on fallen Sorbus aucuparia, 04.08.2012, A.V. Ruokolainen, PTZ; rr. Threat status: Fin – NT.

C. viridans (Berk. et Broome) Donk – Ruokolainen 2013 a; northeast of Velikaya Guba, on fallen Alnus incana, 17.08.2010, A.V. Ruokolainen, PTZ; rr.

Clavariadelphus ligula (Schaeff. : Fr.) Donk – Ruokolainen 2013 c; south of the village of Lambas Ruchei, pine forest, on litter, 23.08.2012, A.V. Ruokolainen; r.

Clavulina cinerea (Bull. : Fr.) J. Schröt. – Ruokolainen 2013 a; Podyelniki, ecological trail, on litter, 03.08.2012, A.V. Ruokolainen, PTZ; Kizhi Isl., on litter, 04.08.2012, A.V. Ruokolainen, PTZ; r.

Coltricia perennis (L. : Fr.) Murrill – Ruokolainen 2013 c; near Lake Nizhnee Pigmosero, on dead Salix, 22.08.2012, A.V. Ruokolainen; pine forest, comp. 13, on litter, 22.08.2013, A.V. Ruokolainen; p.

Corticium roseum Pers. : Fr. – Ruokolainen 2013 c; north of Tambitsy, environs of Tolsty Navolok, comp. 71, spruce forest, 16.08.2013, O. Manninen; rr.

Craterellus cornucopioides (Fr.) Pers. – Ruokolainen 2013 c; environs of Velikaya Niva, spruce forest, on deadwood of Salix, 23.08.2012, A.V. Ruokolainen; Lipovitsy, comp. 41, Tambitsy, spruce forest on litter, 23.08.2013, 28.08.2013, A.V. Ruokolainen; stp. Threat status: Kar – 3 (NT).

C. tubaeformis (Fr.) Quél. – Lipovitsy, spruce forest, on litter, stp.

*, **C. dryinum** (Berk. et M.A. Curtis) Parmasto – Ruokolainen 2013 c; north of Podyelniki, spruce forest, on fallen spruce, 10.08.2010, A.V. Ruokolainen; Lipovitsy, Myrtillus, spruce forest, on fallen spruce, 21.08.2013, A.V. Ruokolainen, PTZ; north of Tambitsy, environs of Tolsty Navolok, comp. 71, 26.08.2013, A.V. Ruokolainen; Syar peninsula, comp. 154, 17.08.2013, O. Manninen; stp. Threat status: Fin – NT.

Cytidia salicina (Fr.) Burt – Ruokolainen 2013 c; near Lake Nizhnee Pigmosero, on deadwood of *Salix*, 22.08.2012, A.V. Ruokolainen; stp.

D. septentrionalis (P. Karst.) Niemelä – Ruokolainen 2013 c; environs of Velikaya Niva, pine forest, on dead birch, 23.08.2012; stp.

Datronia mollis (Sommerf.) Donk – Bondartseva et al. 1999; Ruokolainen 2013 c; north of Tambitsy, environs of Tolsty Navolok, comp. 71, Tambitsy, Kaskoselga, south of Uzkaya Salma, mixed forest, on birch and aspen, 11.08.2010, 13.08.2010, 26.08.2013, 28.08.2013, A.V. Ruokolainen; p.

Fomes fomentarius (L.) Fr. – Bondartseva et al. 1999; Ruokolainen 2013 b, c; Bol. Klim. Isl., LE; mixed spruce-dominated forest, on dead birch, fq.

Fomitopsis pinicola (Sw. : Fr.) P. Karst. – Bondartseva et al. 1999; Ruokolainen 2013 b, c; Bol. Klim. Isl., LE; mixed spruce-dominated forest on deadwood of birch, fq.

Ganoderma applanatum (Pers.) Pat. – Bondartseva et al. 1999; Ruokolainen 2013 b, c; Kizhi Isl., H; Bol. Klim. Isl., LE; Zharnikovo, mixed forest, on deadwood of *Sorbus aucuparia* and *Salix caprea*, 01.08.2012, A.V. Ruokolainen; Lipovitsy, comp. 41, spruce forest on fallen aspen, 23.08.2013, A.V. Ruokolainen; p.

Gloeophyllum odoratum (Wulfen : Fr.) Imazeki – Bondartseva et al. 1999; Ruokolainen 2013 c; Kizhi Isl., H; near Lake Nizhnee Pigmosero, on deadwood of pine, 22.08.2012, A.V. Ruokolainen; Tipinitsy, spruce forest, on deadwood of spruce, 27.08.2013, A.V. Ruokolainen; r.
G. sepiarium (Wulfen : Fr.) P. Karst. – Bondartseva et al. 1999; Bol. Klim. Isl., LE; near Lake Nizhnee Pigmosero, on deadwood of spruce, 22.08.2012, A.V. Ruokolainen; P. Karst. – Bondartseva et al. 1999; Ruokolainen 2013 c; Kizhi Isl., LE; Zharnikovo, spruce forest, on deadwood of spruce and mixed forest, on birch, aspen and Sorbus aucuparia; p.

*, ** Gloiodon strigosus (Schwein. : Fr.) P. Karst. – Documentation ... 2013; mixed forest, on deadwood of deciduous trees (aspen, Salix caprea), 23–24.08.2013, 28.08.2013, O. Manninen; r. Threat status: Kar – 3 (VU), Fin – NT.

Gloeothele citrina (Pers.) Ginns et G.W. Freeman – Ruokolainen 2013 c; Podyelniki, Zubovo, on fallen pine, 03.08.2012, A.V. Ruokolainen, PTZ; stp.

Hapalopilus rutilans (Pers.) P. Karst. – Ruokolainen 2013 c; like Kopanez, on dead birch, 15.07.1999, A.V. Polevoi, PTZ; Zharnikovo, mixed forest, on deadwood of birch, 01.08.2012, A.V. Ruokolainen; near Lake Nizhnee Pigmosero, on deadwood of birch, 22.08.2012, A.V. Ruokolainen; p.

** Haploporus odorus (Sommerf. : Fr.) Bondartsev et Singer – Documentation ... 2013; comp. 183, on old Salix caprea, 18.08.2013, O. Manninen; rr. Threat status: Kar – 3 (VU), Len – 3, Fin – NT.

Hericium cirrhatum (Pers.) Nikol. – Ruokolainen 2013 c; Zharnikovo, environs of Velikaya Niva, mixed and spruce-dominated forest, on Salix caprea and aspen, 05.08.2012, 23.08.2012, A.V. Ruokolainen; r. Threat status: Len – 3.

Hydnellum aurantiacum (Batsch) P. Karst. – Ruokolainen 2013 a, c; Ladmoszero, south of the village of Lambsruchei, Vanchozero, pine forest on litter, 24–25.08.2012, A.V. Ruokolainen; stp.

H. caeruleum (Hornem.) P. Karst. – Ruokolainen 2013 c; Vanchozero, pine forest, on litter, 25.08.2012, A.V. Ruokolainen; Syar peninsula, comp. 185, 19.08.2013, O. Manninen; stp.

Hydnum repandum L. : Fr. – Ruokolainen 2013 c; environs of Velikaya Niva, spruce forest, on litter, 23.08.2012, A.V. Ruokolainen; stp.
H. rufescens Schaeff.: Fr. – Ruokolainen 2013 c; environs of Velikaya Niva, spruce forest, on litter, 23.08.2012, A.V. Ruokolainen; stp.

Hyphodermna setigerum (Fr.) Donk – Bondartseva et al. 1999; Kizhi Isl., LE; Kizhi Isl., on Sorbus aucuparia and Alnus incana, 16.07.1998, V.I. Krutov, PTZ; r.

Hyphodonta abietica (Bourd et Galzin) J. Erikss. – Lake Korbozero, Tipintysi, mixed forest on fallen pine, 27.08.2013, A.V. Ruokolainen, PTZ; stp.

H. alienata (S. Lundell) J. Erikss. – Ruokolainen 2013 c; Lipovitsy, spruce forest, on fallen spruce, 21.08.2013, A.V. Ruokolainen, PTZ; stp.

H. alutacea (Fr.) J. Erikss. – Ruokolainen 2013 c; north of Podyelniki, on fallen spruce, 11.08.2010, A.V. Ruokolainen; stp.

H. alutaria (Burt) J. Erikss. – Ruokolainen 2013 c; 1,5 km southwestern of Velikaya Guba, Myrtillus pine forest on fallen pine, 19.08.2010, A.V. Ruokolainen, PTZ; north of Podyelniki, on fallen spruce, 10–11.08.2010, A.V. Ruokolainen; p.

H. arguta (Fr.) J. Erikss. – Ruokolainen 2013 c; Zharnikovo, mixed forest, on deadwood of Salix caprea and Sorbus aucuparia, 05.08.2012, A.V. Ruokolainen; stp.

H. aspera (Fr.) J. Erikss. – Ruokolainen 2013 c; north of Podyelniki, on fallen pine and spruce, 10–11.08.2010, A.V. Ruokolainen; p.

H. barba-jovis (Bull.: Fr.) J. Erikss. – Ruokolainen 2013 c; south of Tambitsy, birch forest with spruce on fallen birch, 04.08.2011, A.V. Ruokolainen, PTZ; p.

H. breviseta (P. Karst.) J. Erikss. – Ruokolainen 2013 c; Zharnikovo, pine forest, on fallen pine; p.

H. cristosa (Pers.: Fr.) J. Erikss. – Bondartseva et al. 1999; Kizhi Isl., on Alnus incana, LE; r.

H. detritica (Bourd et Galzin) J. Erikss. – Polya, mixed forest on fallen aspen, 25.08.2013, A.V. Ruokolainen, PTZ; r.

H. pruni (Lasch) Svěček – Bondartseva et al. 1999; Kizhi Isl., on deadwood of Ulmus, LE; r.

I. radiatus (Sowerby: Fr.) P. Karst. – Ruokolainen 2013 c; Lipovitsy, comp. 41, environs of Tolsty Navolok, comp. 71, on deadwood of Alnus incana, 23.08.2013, 26.08.2013, A.V. Ruokolainen; stp.

Ischnoderma bensoinum (Wahlenb.: Fr.) P. Karst. – Ruokolainen 2013 c; north of Podyelniki, environs of Tolsty Navolok, comp. 71, Lake Korbozero, Polya, comp. 82–83, spruce forest, on deadwood of spruce, 11.08.2010, 05.08.2011, 26–27.08.2013, A.V. Ruokolainen; stp.

*J. luteoalba (P. Karst.) Ryvarden – Ruokolainen 2013 c; Velikaya Guba, Myrtillus pine forest on fallen pine, 08.08.2011, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 154, 17.08.2013, O. Manninen; r.

J. pseudozilingiana (Parmasto) Ryvarden – Ruokolainen 2013 c; Bolshoi Lelikovskiy Isl., pine forest with spruce on old birch, 09.08.2010, A.V. Ruokolainen, PTZ; Lipovitsy, spruce forest on deadwood of aspen, 21.08.2013, A.V. Ruokolainen, PTZ; Tambitsy, spruce forest with aspen, on fallen aspen, 28.08.2013, A.V. Ruokolainen, PTZ; stp. Threat status: Kar – 4 (DD), Len – 4, Fin – VU.

Laetiporus sulphureus (Bull. : Fr.) Murrill – Lipovitsy, comp. 41, spruce forest on deadwood of aspen, 23.08.2013, A.V. Ruokolainen; rr.

Laxitextum bicolor (Pers.) Lentz – Ruokolainen 2013 c; near Lake Nizhnee Pigmosero, on *Alnus incana*, 22.08.2012, A.V. Ruokolainen; stp.

Lentaria byssiseda (Pers. : Fr.) Corner – Polya, mixed forest on *Salix*, 25.08.2013, A.V. Ruokolainen, PTZ; rr.

Lenzites betulina (L.) Fr. – Bondartseva et al. 1999; Ruokolainen 2013 c; Kizhi Isl., on deadwood of *Sorbus aucuparia*, LE; stp.

Leptoporus mollis (Pers.) Quél. – Ruokolainen 2013 c; south of Tambitsy, birch forest with spruce on fallen spruce, 04.08.2011, A.V. Ruokolainen, PTZ; Lipovitsy, comp. 41, spruce forest on on deadwood of spruce, 23.08.2013, A.V. Ruokolainen; Syar peninsula, comp. 133, 178, on deadwood of spruce. 16.08.2013, 18.08.2013, O. Manninen; stp. Threat status: Kar – 3 (NT), Len – 3.

Merulius tremellosus Schrad. : Fr. – Ruokolainen 2013 c; Zharnikovo, mixed forest, on deadwood of aspen, 05.08.2012, A.V. Ruokolainen; Lipovitsy, spruce forest on fallen aspen, 21.08.2013, A.V. Ruokolainen; Lake Korbozero, Tipinitsy, spruce forest, on deadwood of aspen, 27.08.2013, A.V. Ruokolainen; p.

Mycoacia fuscoatra (Fr. : Fr.) Donk – Lipovitsy, comp. 41, spruce forest on deadwood of aspen, 23.08.2013; stp. Threat status: Len – 3.

M. uda (Fr.) Donk – Ruokolainen 2013 c; south of the village of Lambasruchei, Lake Onega shore, pine forest on fallen aspen, 24.08.2012, A.V. Ruokolainen, PTZ; Zharnikovo, mixed forest on *Salix*, A.V. Ruokolainen; Syar peninsula, comp. 154, 180, 185, on deadwood of pine, 17.08.2013, 19.08.2013; 22.08.2013, 27.08.2013, O. Manninen; r. Threat status: Fin – NT.

O. leporina (Fr.) H. Jahn – Ruokolainen 2013 c; Syar peninsula, comp. 154, 176, on deadwood of spruce, 17.08.2013, O. Manninen; north of Tambitsy, environs of Tolsy Novolok, Tambitsy, Lake Korbozero, Tipinitsy, comp. 71, 132, 177, 193, mixed herb-rich and spruce forest on old deadwood spruce, 26–28.08.2013, A.V. Ruokolainen; stp.

O. populinus (Schumach. : Fr.) Donk – Bondartseva et al. 1999; Ruokolainen 2013 b, c; Kizhi Isl., H; Zharnikovo, mixed forest on *Salix*, A.V. Ruokolainen; Tambitsy, spruce forest on deadwood of aspen, 28.08.2013, A.V. Ruokolainen; p.

Peniophora incarnata (Pers.) P. Karst. – Ruokolainen 2013 c; south of the village of Uz-kaya Salma, moist spruce forest on fallen aspen, 13.08.2010, A.V. Ruokolainen, PTZ; p.

∗, **Phaeolus schweinitzii** (Fr.) Pat. – northwest of the Vatnavolok village, Syar peninsula, comp. 154, 184, in old-growth forest on the roors of pine, 17.08.2013, 19.08.2013, O. Manninen; r.

∗, **Phaeolus nigricans** (Fr.) P. Karst. – Bondartseva et al. 1999 (Ph. igniarius); Ruokolainen 2013 b, c; Bolshoi Lelikovskiy Isl., Zharnikovo, mixed spruce-dominated forest on dead birch; fq.

∗, **Phaeolus nigrolimitatus** (Romell) Bourdot et Galzin – Ruokolainen 2013 a, c; north of Podyelniki, Lipovitsy, spruce forest on dead spruce, 11.08.2010, 05–06.08.2011, 23.08.2013,
A.V. Ruokolainen; Syar peninsula, comp. 174, 176, 186, 17.08.2013, 19.08.2013, O. Manninen; stp.

* **Ph. punctatus** (P. Karst.) Pilát – Bondartsev et al. 1999; Ruokolainen 2013 b, c; Kizhi Isl., on deadwood of *Salix caprea*, 16.07.1998, V.I. Krutov, PTZ; Zharnikovo, Polya, on *Alnus incana* and *Sorbus aucuparia*, 01.08.2012, 24.08.2013, A.V. Ruokolainen; p.

Ph. tremulae (Bondartsev) Bondartsev et P.N. Borisov – Bondartseva et al. 1999, Ruokolainen 2013 a, b, c; Bol. Klim. Isl., on dead of *Salix caprea*, 07.07.1997, A.V. Ruokolainen, PTZ; Polya, Zharnikovo, spruce-dominated forest on dead aspen, A.V. Ruokolainen, fq.

* **Ph. viticola** (Schwein. ex Fr.) Donk – Ruokolainen 2013 a, c; Syar peninsula, on deadwood of conifers, comp. 153–154, 176–178, 183, 17–18.08.2013, O. Manninen; environs of Velikaya Niva, spruce forest on dead spruce, 23.08.2012, A.V. Ruokolainen; Lipovitsy, Polya, north of Tambitsy, environs of Tolsty Navolok, Tambitsy, Tipinitsy, comp. 41, 71, 84 et al., A.V. Ruokolainen; stp.

Ph. livida (Pers. : Fr.) Bres. – Ruokolainen 2013 c; north of Podyelniki, pine forest, on fallen pine, 10.08.2010, A.V. Ruokolainen, PTZ; r.

Ph. radiata Fr. – Ruokolainen 2013 c; Zharnikovo, mixed forest, on fallen *Salix*, A.V. Ruokolainen; stp.

Ph. segregata (Bourdot et Galzin) Parmasto – north of Tambitsy, environs of Tolsty Navolok, comp. 71, spruce forest, on old fallen spruce, 26.08.2013, A.V. Ruokolainen, PTZ; r.

* **Ph. serialis** (Fr. : Fr.) Donk – northwest of the Vatnavolok village, Syar peninsula, comp. 183, on deadwood of conifers 18.08.2013; 27.06.2013, 23.08.2013, O. Manninen; r.

Phlebiella sulphurea (Pers.) Ginns et M.N.L. Lefebvre – Ruokolainen 2013 c; spruce, pine and mixed forest on deadwood of coniferous and deciduous trees; p.

Phlebiopsis gigantea (Fr.:) Jülich – Ruokolainen 2013 c; north of Podyelniki, south of Uzkyaya Salma, Tambitsy, spruce forest on dead of spruce, 10.08.2010, 13.08.2010, 28.08.2013, A.V. Ruokolainen; stp.

Physisporinus vitreus (Pers. : Fr.) P. Karst. – Lipovitsy, comp. 41–42, spruce forest, on deadwood of coniferous and deciduous trees, 23.08.2013, 24.08.2013, O. Manninen; r.

Threat status: Len – 3.

Piloderma bicolor (Peck) Jülich – Ruokolainen 2013 c; north of Podyelniki, spruce forest, on deadwood of coniferous and deciduous trees, A.V. Ruokolainen; p.
** Piloporia sajanensis (Parmasto) Niemelä – Documentation ... 2013; Uzkaya Salma village, comp. 26, moist spruce forest, on fallen spruce on fruitbody of *Trichaptum laricinum*, 28.06.2013, O. Manninen, A.V. Kravchenko, PTZ; rr. Threat status: Kar – 3 (VU), Fin – EN.

** Plicatura nivea** (Sommerf.: Fr.) P. Karst. – Bondartseva et al. 1999; Ruokolainen 2013 c; southern part on Bol. Klim. Isl., spruce forest, on fallen *Alnus incana*, LE; stp.

Polyporus badius (Pers.) Schwein. – Ruokolainen 2013 c; Bolshoi Lelikovskiy Isl., mixed forest, on fallen aspen, 09.08.2010, A.V. Markovsky, O. Turunen, PTZ; Zharnikovo, mixed forest, on fallen aspen, 09.08.2010, A.V. Ruokolainen, PTZ; Zharnikovo, mixed forest, on fallen aspen, 05.08.2012, A.V. Ruokolainen, PTZ; Tipintsy, spruce forest on fallen aspen, 27.08.2013, A.V. Ruokolainen, PTZ; stp. Threat status: Fin – VU.

** P. leptocephalus** (Jacq.) Fr. [= *P. varius* (Pers.) Fr.] – Bondartseva et al. 1999; Ruokolainen 2013 c; Bolshoi Lelikovskiy Isl., mixed forest, on fallen aspen, 09.08.2010, A.V. Ruokolainen, PTZ; Zharnikovo, mixed forest, on fallen aspen, 05.08.2012, A.V. Ruokolainen; p. *P. melanopus* (Pers.) Fr. – Ruokolainen 2013 c; Podyelniki, Zubovo, mixed forest, on old deadwood of birch, 03.08.2012, A.V. Ruokolainen, PTZ; stp.

Postia alni Niemelä et Vampola – Ruokolainen 2013 b, c; Zharnikovo, Lipovitsy, comp. 41, spruce and mixed forest, on deadwood of *Salix caprea*, *Sorbus aucuparia* and alder, A.V. Ruokolainen; stp.

** P. caesia** (Schrad.: Fr.) P. Karst. – Bondartseva et al. 2000; Ruokolainen 2013 c; north of Tambitsy, environs of Tolsty Navolok, comp. 71, spruce forest on deadwood of *Salix caprea* and aspen, 09.08.2010, 04.08.2012, 26.08.2013, A.V. Ruokolainen; stp.

** P. fragilis** (Fr.) Jülich – Ruokolainen 2013 c; spruce forest on fallen pine, 05.08.2011, A.V. Ruokolainen, PTZ; Zharnikovo, pine forest, on dead pine, 02.08.2012, A.V. Ruokolainen; Syar peninsula, comp. 186, 19.08.2013, O. Manninen; north of Tambitsy, environs of Tolsty Navolok, comp. 71, spruce forest on fallen pine and spruce, 26.08.2013, A.V. Ruokolainen; Tambitsy, motley grass spruce forest, on fallen spruce, 28.08.2013, A.V. Ruokolainen; p.

*, ** P. guttulata** (Peck) Jülich – Ruokolainen 2013 b, c; south of the village of Uzkaya Salma, spruce forest, on dead spruce, 13.08.2010, A.V. Ruokolainen; Podyelniki, mixed forest, on the roots of dry spruce, 03.08.2012, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 181, 186, on deadwood of spruce, 19.08.2013, O. Manninen; stp. Threat status: Fin – NT.

*, ** P. lateritia** Rennvall – Ruokolainen 2013 a; Syar peninsula, comp. 175, 180, 183, 186, on deadwood of conifers, 17–19.08.2013; 22.08.2013, O. Manninen; stp. Threat status: Fin – NT.

** P. sericeomollis** (Romell) Jülich – Syar peninsula, comp. 152, 183, spruce forest, on deadwood of conifers, 16.08.2013, 18.08.2013; 25.06.2013, 27.06.2013, 22.08.2013, O. Manninen; stp.

** P. stiptica** (Pers.: Fr.) Jülich – Ruokolainen 2013 c; Lake Korbozero, Tipintsy, mixed forest on deadwood of spruce, 27.08.2013, A.V. Ruokolainen; Tambitsy, motley grass spruce forest on deadwood of spruce, 28.08.2013, A.V. Ruokolainen; stp.
P. *tephroleuca* (Fr.) Jülich – Ruokolainen 2013 c; Bolshoi Lelikovskiy Isl., mixed forest on fallen aspen, 09.08.2010, A.V. Ruokolainen, PTZ; north of Tambitsy, environs of Tolsty Navolok, comp. 71, spruce forest, on fallen birch and spruce, 26.08.2013, A.V. Ruokolainen; stp.

Pseudochaetae tabacina (Sowerby) T. Wagner et M. Fisch. [= *Hymenochaete tabacina* (Sowerby) Lév.] – Ruokolainen 2013 c; Kizhi Isl., mixed forest on fallen aspen, 04.08.2012, A.V. Ruokolainen; Zharnikovo, mixed forest on fallen *Sorbus aucuparia*, 01.08.2012, A.V. Ruokolainen; stp.

Pseudohydnum gelatinosum (Scop. : Fr.) P. Karst. – spruce forest, on fallen spruce, 27.08.2013, O. Manninen; r.

Pseudochaetae tabacina (Sowerby) T. Wagner et M. Fisch. [= *Hymenochaete tabacina* (Sowerby) Lév.] – Ruokolainen 2013 c; Kizhi Isl., mixed forest on fallen aspen, 04.08.2012, A.V. Ruokolainen; Zharnikovo, mixed forest on fallen *Sorbus aucuparia*, 01.08.2012, A.V. Ruokolainen; stp.

Pseudomerulius aureus (Fr.) Jülich – Syar peninsula, comp. 133, 180, 183, 16.08.2013, 18–19.08.2013, O. Manninen; r.

Pycnoporellus alboluteus (Ellis et Everh.) Kotl. et Pouzar – south from Velikaya Guba village, at the western part of peninsula, comp. 9 of Kizhi forestry unit in old-growth spruce forests on fallen 24.08.2013, O. Manninen, T. Kuuluvainen; rr. Threat status: Fin – VU.

Rhodonia placenta (Fr.) Niemelä, K.H. Larss. et Schigel – Ruokolainen 2013 a, c; south of the village of Uzkaya Salma, moist spruce forest, on fallen spruce, 13.08.2010, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 178, 180, 183, 186, 18–19.08.2013, O. Manninen; Lipovitsy, comp. 41, spruce forest on deadwood of spruce, 23.08.2013, A.V. Ruokolainen; stp.

Rhodonia placenta (Fr.) Niemelä, K.H. Larss. et Schigel – Ruokolainen 2013 a, c; south of the village of Uzkaya Salma, moist spruce forest, on fallen spruce, 13.08.2010, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 178, 180, 183, 186, 18–19.08.2013, O. Manninen; Lipovitsy, comp. 41, spruce forest on deadwood of spruce, 23.08.2013, A.V. Ruokolainen; stp.

Sarcodon fennicus (P. Karst.) P. Karst. – Ruokolainen 2013 c; south of the village of Lambaruchei, Lake Onega shore, pine forest, on litter, 24.08.2012, A.V. Ruokolainen; by the lake in pine forest, comp. 13, on litter, 22.08.2013, A.V. Ruokolainen; r.
S. glaucopus Maas Geest. et Nannf. – Syar peninsula, comp. 177, 180, 182, 185–186, pine forest on litter, 18–19.08.2013; 27.08.2013, O. Manninen; r.
S. imbricatus (L.: Fr.) P. Karst. – north of Tambitsy; environs of Tolsty Navolok, comp. 71, spruce forest on litter, 26.08.2013, A.V. Ruokolainen; r.
Schizopora paradoxa (Schrad. : Fr.) Donk – Ruokolainen 2013 c; on deadwood of aspen and birch; r.
Scytinostroma galactinum (Fr.) Donk – Ruokolainen 2013 c; Zharnikovo, pine forest, on fallen birch, 02.08.2013, A.V. Ruokolainen, PTZ; r. Threat status: Fin – NT.
S. odoratum (Fr.) Donk – Tambitsy, Myrtillus spruce forest, on fallen spruce, 28.08.2013, A.V. Ruokolainen, PTZ; r.
** Serpula himantioides (Fr.: Fr.) P. Karst. – 27.06.2013, O. Manninen; r.
Sistotrema raduloides (P. Karst.) Donk – Velikaya Niva, mixed forest, on fallen aspen, 23.08.2012, A.V. Ruokolainen, PTZ; r.
Skeletocutis amorpha (Fr.) Kotl. et Pouzar – Ruokolainen 2013 b, c; Kizhi Isl., on pine wood, 04.08.2012, A.V. Ruokolainen; r.
Sk. biguttulata (Romell) Niemelä – Ruokolainen 2013 c; north of Podyelniki, pine forest, on fallen pine, 11.08.2010, A.V. Ruokolainen, PTZ; r.
Sk. brevispora Niemelä – Ruokolainen 2013 c; north of Podyelniki, spruce forest, on fallen spruce, 10.08.2010, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 153, 17.08.2013, O. Manninen; r. Threat status: Fin – NT.
Sk. chrysella Niemelä – spruce forest, on fallen spruce, 23.08.2013, O. Manninen; rr. Threat status: Fin – NT.
*, ** Sk. odora (Sacc.) Ginns – Ruokolainen 2013 a, c; south of the village of Uzkaya Salma, moist spruce forest, on fallen spruce, 13.08.2010, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 180–183, 18–19.08.2013, O. Manninen; r. Threat status: Fin – NT.
Sk. papyracea A. David – Ruokolainen 2013 c; Zharnikovo, pine forest, on fallen pine, 02.08.2012, A.V. Ruokolainen, PTZ; Syar peninsula, comp. 177, 182, 18.08.2013; 25.06.2013, 24.08.2013, O. Manninen; r.
*, ** Sk. stellae (Pilát) J. Keller – Syar peninsula, comp. 182–183, 18.08.2013; 27.06.2013, 23.08.2013, 26.08.2013, O. Manninen; r. Threat status: Fin – VU.
Stecherinum fimbriatum (Pers.: Fr.) J. Erikss. – Ruokolainen 2013 c; Tambitsy, spruce forest, on fallen aspen, 28.08.2013, A.V. Ruokolainen; stp.
Thelephora terrestris Ehrh. – Ruokolainen 2013 c; Lipovitsy, comp. 41, spruce forest, on litter, A.V. Ruokolainen; stp.
Tomentella bryophila (Peck) M.J. Larsen – Lipovitsy, spruce forest, on fallen aspen, 21.08.2013, A.V. Ruokolainen, PTZ; stp.

T. crinalis (Fr.) M.J. Larsen – Ruokolainen 2013 a, c; south of Uzkaya Salma, spruce forest with aspen, on old fallen aspen, 13.08.2010, A.V. Ruokolainen, PTZ; north of Tambitsy, environs of Tolsty Navolok, comp. 71, spruce forest, on old fallen aspen, 26.08.2013, A.V. Ruokolainen, PTZ; Lake Korbozero, Tipinity, mixed forest, on old fallen aspen, 27.08.2013, A.V. Ruokolainen, PTZ; Threat status: Kar – 3 (NT); r.

T. lateritia Pat. – Ruokolainen 2013 a, c; mixed forest, on fallen aspen; stp.

T. stuposa (Link) Stalpers – Ruokolainen 2013 c; Velikaya Niva, motley grass birch forest, 23.08.2012, A.V. Ruokolainen, PTZ; r.

T. subbilacina (Ellis et Holw.) Wakef. – Ruokolainen 2013 c; Zharnikovo, mixed forest on deadwood of deciduous trees, 02.08.2012, A.V. Ruokolainen, PTZ; r.

T. terrestris (Berk. et Broome) M.J. Larsen – Ruokolainen 2013 c; north of Podyelniki, spruce forest, near fallen aspen, 11.08.2010, A.V. Ruokolainen, PTZ; r.

T. pubescens (Schumach.) Pilát – Ruokolainen 2013 c; Zharnikovo, mixed forest, on fallen birch and alder, 01.08.2012, A.V. Ruokolainen; p.

Trecispora hymenocystis (Berk. et Broome) K.H. Larss. – 27.08.2013, O. Manninen; r.

T. mollusca (Pers. : Fr.) Liberta – 25.08.2013 and 27.08.2013, O. Manninen; r.

Trichaptum abietinum (Dicks.) Ryvarden – Bondartseva et al. 1999; in the southern part on Bol. Klim. Isl., spruce forest, on fallen spruce, 05.07.1997, A.V. Ruokolainen, PTZ; fq.

T. fuscoviolaceum (Ehrenb.) Ryvarden – Ruokolainen 2013 c; the river Padma, on fallen pine, 04.09.2005, A.V. Ruokolainen, PTZ; stp.

T. pargamenum (Fr.) G. Cunn. – Bondartseva et al. 1999; Syar peninsula, comp. 186, 19.08.2013; Polya, mixed, pine and spruce forest, on fallen birch, 22.08.2013, 24.08.2013, A.V. Ruokolainen; 27.08.2013, O. Manninen; stp. Threat status: Fin – NT.

3.6 Insect fauna of Zaonezhye Peninsula and adjacent islands

Jevgeni Jakovlev*, Alexei Polevoi** and Andrei Humala**

* The Finnish Environment Institute (SYKE)
Mechelininkatu 34a. P.O. Box 140, FIN-00251 Helsinki, Finland
** Forest Research Institute of Karelian Research Center of Russian Academy of Sciences
11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
- Corresponding author
E-mail: jevgeni.jakovlev@ymparisto.fi

Introduction

Zaonezhye Peninsula is situated on the northwestern coast of Lake Onega, in the eastern part of the biogeographical province of Karelia onegensis. In the east its shores are washed by Zaonezhye Gulf, while in the west the peninsula is bordered by Lizhma Bay and Bolshoye Onego Gulf of Lake Onega. Zaonezhye Peninsula lies on the basement rocks of Fennoscandia and characterized by underlying basic limestone and carbonate rocks. This, together with highly fertile soils, has contributed to the diversity of habitats and plant species on Zaonezhye Peninsula. For this reason, it is considered a separate vegetation region (Ramenskaya 1983). The same is true of the insect fauna, which has interested entomologists for a long time.

History of entomological studies on Zaonezhye Peninsula

Entomological studies on Zaonezhye Peninsula began in the second half of the 19th century. At that time it was one of the most developed agricultural areas in Karelia with good connection to Petrozavodsk by water transport. The earliest records from this area date back to 1859–1899 when the apothecary of Alexandrovsky plant (Petrozavodsk), Alexander Günther, collected insects mainly around Petrozavodsk, covering eastern parts of the provinces Kon and Kol (Pekkarinen & Hulđén 1995). The collections of Alexander Günther are not available in Russia. However, he maintained contact with Finnish entomologists and published species lists of Lepidoptera (Günther 1868, 1896 a) and Coleoptera (Günther 1896 b). A large part of his collections have been identified by Finnish entomologists and subsequently published, e.g. Kaisila (1947) for Lepidoptera, and Poppius (1899) for Coleoptera. Most of the samples are stored in the Zoological Museum of Helsinki.
The first detailed study of beetles (Coleoptera) around Lake Onega was conducted by the famous Finnish entomologist Bertil Robert Poppius (Poppius 1899). Between June and August 1896, he visited several places on the shores of the lake, including Zaonezhye Peninsula inland areas (locations Dianova Gora, Kozmozero, Unitsa), villages on its eastern and southern shores, Kuzaranda, Shun’ga (Schungu in Poppius’ transcription), Tolvyua (Tolvoja), Velikaya Guba (Velikaja-guba), and the Kizhi archipelago, islands Bolshoi Klimentovsky, Kizhi (Kischi), and Southern Oleny (Yu. Oleny in the species list). Several species are recorded as ‘Saoneshje-halfön’ without indication of certain locality. As a result, more than 400 of presently recognized beetle species were reported for the first time from Zaonezhye area.

The next records of insect from Zaonezhye Peninsula were by Finnish entomologists during the Second World War (Kaisila 1947, Valle 1952, Kontuniemi 1965, etc.). After the war, the insect fauna of the area was not studied until the middle of the 1990s when entomologists from the Forest research institute of the Karelian Research Center of the Russian Academy of Sciences started inventories of the Kizhi archipelago, including the islands of Kizhi, Bolshoi Klimentovsky, Volkostrov and Yuzhnyi Oleniy (Jakovlev et al. 1999). Later, faunistic studies have been continued in the same areas as well as on the southern end of the peninsula, adjacent to the Kizhi archipelago, (e.g. Podyelniki and Oyatevchina). Additional materials of Lepidoptera have been collected by Dr. Vyacheslav Gorbach (Petrozavodsk State University) and Finnish entomologists around the village of Sennaya Guba (Gorbach & Saarinen 2002; Gorbach & Kabanen 2010). All these areas are a part of the Kizhi nature reserve (zakaznik). As a result, nearly 2 000 insect species have been recorded from the entire Kizhi archipelago (Humala & Polevoi 2012).

Areas north of the Kizhi Nature Reserve remained unstudied from the time of Poppius until 2012 when approximately 1 000 insect species were recorded in the northern part of the peninsula, including the villages of Kozmozero, Myagrozero, Shun’ga and Turastamozero (Polevoi & Humala 2013). These areas are proposed to be included in the planned Zaonezhye landscape reserve (zakaznik). The latest samples were collected outside of the planned landscape reserve in 2013 during the joint Finnish-Russian expedition to the southern lowlands of Zaonezhye Peninsula (Kizhi forestry unit, or lesnichestvo, and a part of the Velikaya Niva forestry unit, compartments (quartals) 46-47, 69-71, 79-83, 97-100, 102-104, 114-117, 123-124, 140-143, 158-162). Also, Karelian entomologists collected samples during a short visit to the coastal areas of Zaonezhye Peninsula and adjacent islands in 2004, and northern part of the Kizhi Nature Reserve in 2014 (Eglov Island and its vicinities).

Study area and methods

Materials were collected between 1994 and 2013 in the Medvezhiegorsk and Kondopoga municipalities of the Republic of Karelia, within the biogeographical province of Karelia onegensis. Our samples originated from approximately 74 sites (Fig. 1), which have been grouped into 40 generalised locations in the species list.
We used a variety of collecting methods in order to capture different insect groups: sweep netting, portable Malaise traps (Jaschoff & Didham 2002) (Fig 2), yellow pan traps (Masner 1976), polypore traps (Kaila 1993) as well as light trapping with an ultraviolet lamp and a white sheet. In addition, we collected insects on dead wood, fungi and flowers (Fig. 3). In 2013, three Malaise traps were placed in the Kizhi forestry unit (surroundings of the villages Uzkaya Salma and Lipovitsy) and Velikaya Niva forestry unit (near the village Polya) for the period between 26th June and 25th August. Easily distinguishable species were identified by appearance, or photographed.

We concentrated on three large insect orders: Coleoptera, Hymenoptera and Diptera. In the order Lepidoptera we recorded mostly representatives of the suborder Rhopalocera. Some insect groups were excluded due to problems in identification. Other groups have limited samples due to selective methods used. Original materials are stored at the Forest research institute of Karelian Research Center of the Russian Academy of Sciences (Petrozavodsk), and in Finnish Environment Institute (Helsinki). There are also old insect collections from Zaonezhye area which are now stored in the Zoological Museum of the University of Helsinki (Finland). We could not manage checking of all these materials, but listed only published records.
Results

In total, approximately 2453 insect species were recorded from Zaonezhye Peninsula and adjacent archipelagos. Of these: Ephemeroptera–1, Odonata–27, Orthoptera–14, Blattoptera–2, Mecoptera–2, Raphidioptera–1, Neuroptera–3, Hemiptera–61, Coleoptera–583, Lepidoptera–218, Hymenoptera–428, and Diptera–1113 species.

The characteristics of insect fauna are determined not only by the diversity of natural habitats, but also by the history of landuse on Zaonezhye Peninsula. In addition
to species typical of old-growth forests, there are species associated with secondary forests with a large amount of dead wood of deciduous trees, as well as meadow insect fauna.

Originally the area was covered with high quality coniferous forests, growing in conditions close to optimal. At present, intact coniferous forests are preserved only in paludified areas and on steep, rocky slopes. The rest of the forests have been affected by selective cuttings. Especially close to the villages, forests have grown naturally on abandoned fields and hay meadows. According to forest inventory data from 1999 (Gromtsev & Krutov 2000), pine- and spruce-dominated forests occupy nearly 60 percent of the forest cover in approximately equal proportions. The remaining area is covered by forests dominated by birch (ca. 30%), aspen (5%) or grey alder (6%).

The studied forests in the lowland parts of Zaonezhye Peninsula can be divided roughly into three classes. These are (1) high quality primeval forests with negligible human impact, (2) forest of high conservation potential, rapidly restoring natural values after earlier human use, and (3) successional forests, which are developing after the abandonment of fields and forest pastures (see Kuuluvainen and Tikkanen, Reports of the Finnish Environment Institute 40 | 2014).

Human impact on the study area has always been significant. During our sampling trips in 2012 (northern parts of Zaonezhye Peninsula) and 2013 (southern parts), we found only a few sites of high quality spruce dominated forests and mire-spruce stands that could be characterized as near primeval forest. At least, two threatened beetle species, Pytho kolwensis and Monochamus urussovi seem to be fairly well-preserved here.

Forests of the second class which has been used to some extent in the past for selective cutting, slash-and-burn cultivation, etc., and then developed naturally during dozens of years occupy large areas in Zaonezhye Peninsula and in some islands, e.g. Bolshoy Klimenetsky. Although of secondary origin, these forests are rich in coarse woody debris and, therefore, host a series of saproxylic beetle (Coleoptera) species that are typical for intact boreal forests, e.g. Ceruchus chrysomelinus (Lucanidae), Phaenops cyanea, Chrysobothris chrysostigma (Buprestidae), Phryganophilus ruficollis (Melandryidae), Niveilia sanguinosa, Pedostrangalia pubescens and Leptura nigripes (Cerambycidae) as well as their parasitoids, e.g. ichneumonoid wasps Arotes albicinctus and Coleocentrus exareolatus (Hymenoptera). Many of these species have declined dramatically in Western Europe, many are redlisted. Pine-dominated stands usually contain old trees bearing signs of resin extraction which was carried out some tens years ago, however, neither signs of insect epidemics, nor symptoms of forest decline due to insect pests have been observed.

The third class of forests - mixed deciduous stands with alder, birch and aspen occupy abandoned fields, slash-and-burn sites and pastures near former villages. In many sites, there is plenty of dead wood of aspen where we found several internationally rare insect species, including flies Symmerus nobilis and Xylomya czekanovskii (Diptera), beetles Hylocharas cruciatus, Rhizophagus pincticollis, and Leiopus punctulatus (Coleoptera). In Finland these species are highly threatened, ranging from vulnerable (VU) to regionally extinct (RE). In Karelia they have been recorded only in southern part from limited areas like Kivach Nature Reserve (Ivanter & Kuznetsov 2007). In Zaonezhye they seem to be well-preserved in secondary forests on fertile soils.

Grasslands are located mainly in the southern and eastern lowlands where they have been intensively used as hay meadows and pastures. Relatively large areas have been covered with arable land. At present, most of these areas are abandoned, gradually transforming into young secondary deciduous forest. We found and observed only a few intact grasslands on the islands of the Kizhi archipelago and in the eastern shore of Zaonezhye Peninsula. Wet grasslands can be found in the narrow bays along
the shoreline. Formerly, local population used these grasslands for haymaking, whereas presently they are occupied with a combination of mire and meadow vegetation (Kuznetsov 1993). Typical grassland species include Psophus stridulus (Orthoptera) and several species of butterflies, e.g. internationally rare Parnassius mnemosyne and Zygæna asteroides, which are considered very rare and threatened both in Karelia and the entire Europe. Very interesting is a recent finding of a longhorn beetle species, Aromia moschata at the edge of abandoned field on Bolshoy Klimenetsky Island. This species develops primarily in willows.

Conclusions

Zaonezhye Peninsula was one of the most highly developed rural regions in Karelia during the extended period. Long history of traditional agriculture and its general decline in the recent years led to formation of huge variety of habitats in the area including open meadows, secondary stands on abandoned fields and remnants of natural coniferous forests. Such variety together with a set of favorable abiotic conditions provide successful existence of various insect group: saproxylic species, requiring dead wood of certain tree species at different stages of decay; herbivores, trophically associated with certain plant species; aquatic species, which require special water conditions, etc. Many of such species nowadays become very rare or even extinct in other parts of Karelia as well as in whole Fennoscandia. Our findings undoubtedly indicate the uniqueness of Zaonezhye Peninsula territory and its significant value in terms of insects’ biodiversity conservation. It is a strong ecological argument to establish protected areas for conservation of the habitats of saproxylic insects and insects confined to intact grasslands which were revealed during the entomological studies.

Zaonezhye Peninsula and adjacent islands is an exceptional area in Karelia for which there is a considerable amount of old records of insects made before vast-scale mechanical forest logging was started in Karelia. It allows tracing dynamics of distribution of the threatened insect species in forests and grasslands. The twenty-year studies in 1994-2014, showed that saproxylic insects associated with aspen are well preserved in many places. Also, several threatened Coleoptera species associated with spruce and birch have been rediscovered in suitable habitats. These are, for instance, Pytho kolweenis, Phryganophillys ruficollis, Ceruchus chrysomelinus which are strongly declined throughout Northern Europe. All these species have a special value for nature conservation. On the other hand, we have failed to rediscover many Coleoptera species associated with pine, e.g. a bark beetle Ips sexdentatus which was recorded from the area by Poppius (1899) more than hundred years ago. This species is possibly extinct in Southern Karelia, and can be found only in places of stored barked pine wood (Jakovlev et al. 2000). A buprestid species, Phaenops cyanae which also seems to be declined in southern part of Karelia has been found in the timber store.

Among the insects dependent on traditional agriculture landscapes, several species were evidently strongly declined. For instance, we have not found a dung beetle Onthophagus ruchicornis recorded by Poppius (1899). At the same time, several threatened insect inhabiting dry meadows still exist, inspite of the declining of agriculture and overgrowth of their natural habitats. The most interesting finding is the rattle grasshopper, Psophus stridulus which was mentioned by old authors (Ozeretskovsky 1989) as a common species in Southern Karelia. At present, P. stridulus population in Kizhi archipelago seems to be the only one in Russian Karelia. To maintain it, the special measures aimed to restore dry meadows in Zaonezhye are in urgent need. In Finland, the rattle grasshopper is considered as rapidly-declining, endangered species inhabit primarily dry and sunny sandy areas and eskers,
and gradually moving from its natural biotopes to manmade environments, like the embankments of railroad tracks and roadside verges (Intke & Piirainen 2014).

There are ecological groups, e.g. aquatic insects, and many taxonomic groups of insects which were not studied in the area yet. Further research is needed for these groups, as well as for localities which are not covered for entomological research in Zaonezhye Peninsula and adjacent islands.

Acknowledgements

We thank Mrs. N.N. Kutenkova (Kivach Nature Reserve) for the help in identifying Lepidoptera species, Mr. Juho Paakkunen (Helsinki Zoological Museum, Finland) for the help with identifying of some aculeates (Hymenoptera) and results of his trip in 2010 to Kizhi Nature Reserve.

The study was partly supported in 1994–2014 by the Russian Foundation for Basic Research (grant No 13-04-98821), the Presidium of the Russian Academy of Sciences (Programm of Fundamental Research Living Nature: Modern State and Development Problems), Kizhi Nature Reserve (State Zakaznik Kizhsky), and the project Barents Protected Area Network (BPAN) leaded by the Finnish Environment Institute.

Annotated list of the insect species included in Red Data Book of the Republic of Karelia (Ivanter & Kuznetsov 2007) and other noteworthy insect species

The threat status is given according to the following sources: Karelia (Kar) – Ivanter & Kuznetsov (2007), Leningrad Region (Len) – Noskov (2002), Finland (Fin) – Rassi et al. (2010).

Species reported for the first time in Karelia are marked with asterisks.

ODONATA

Aeshnidae

Aeshna viridis Eversmann, 1836
Material. 5 km N of Nikonova Guba, 1♂, under an electric power line, 22/8/2012 (A. Humala).

There are old records of the species from northern Ladoga (Valle 1927; Tiensuu 1933). There are also unconfirmed findings in the Kondopoga region (S. Uzenbaev, pers. comm.). Larvae of the species develop in thickets of Water soldiers (*Stratiotes aloides* L.). Due to habitat specification, the species is scarce and under threat over much of its range (Dijkstra, Lewington, 2006). Threat status: Kar – 4 (DD); Len – 3 (VU).

Liellulidae

Libellula fulva Müller, 1764
Material. 5 km S of Tuurastamozero, 1♂, 1♀, on the shore of a small river, 21/7/2012 (A. Polevoi).

This is the first modern record of the species in Karelia. It was previously known only from northern Ladoga (Valle 1927; Tiensuu 1933). The species requires a specific combination of water quality and habitat structure and is therefore only locally common in Europe (Dijkstra, Lewington 2006). Threat status: Kar – 4 (DD).

ORTHOPTERA

Acrididae

Psophus stridulus (Linnaeus, 1758) (Fig. 4)
An outstanding representative of the order Orthoptera. In adults, the hind wings have a bright red colour, and the males emit a characteristic chatter during flight. The species was first recorded in Karelia, near Konchezero, at the end of the 18th century (Ozeretskovsky 1989). Previously the species seems to have been distributed throughout the southern part of Karelia up to the border of the middle taiga (Albrecht 1979). However, it had not been observed here for over 50 years, and was considered as regionally extinct (Ivanter & Kuznetsov 1995) until it has been rediscovered in Kizhi archipelago. The cause of decline is the overgrowth of its natural habitats. Threat status: Kar – 1(CR); Len – 3 (VU); Fin – VU.

Fig. 4. *Psophus stridulus* (Photo Alexei Polevoi).

COLEOPTERA

Scarabaeidae

Onthophagus nuchicornis (Linnaeus, 1758)

The species was recorded from Kizhi Island by Poppius in 1896 (Poppius 1899). It has been formerly distributed in southern parts of Fennoscandia. At present, the species is probably extinct in Russian Karelia, as well as in Finland, where the most recent record are from the years 1946 and 1955, respectively (Muona et al. 1998). In Zaonezhye, well-developed traditional husbandry provided the optimal habitats for *O. nuchicornis*. However, environmental changes caused by decline of the agricultural ecosystems are suggested as a reason for the decline in the occurrence of this vulnerable species with dung-living larvae. Threat status: Kar – 0 (RE); Fin – RE.

Lucanidae

Ceruchus chrysomelinus (Hochenwarth, 1785)

This is typical inhabitant of old-growth forest with big amount of coarse woody debris. Larvae live in well-decayed wood with brown rot fungi. They can colonize different tree species. In Karelia, most records are from spruce. Considered as threatened in all countries on Northern Europe, the threat factor is reduction of the area of old-growth forests. In Karelia has been recorded only from southern part. Common
in Kivach Nature Reserve (Jakovlev et al. 1986). Threat status: Kar – 3 (Vu); Fin – EN. The risk of extinction of this species is assigned also in the global level – category NT in the global Red List (IUCN 2014).

Pythidae

Pytho kolwensis Sahlberg, 1833 (Fig. 5)

Material: larvae under bark of spruce logs: Bolshoi Klimenetsky Island, July 2000, Lipovitsy, 25/6/2013 (Jakovlev); Polya, 25/8/2013 (Humala), Tambitsy, 27/8/2013 (Polevoi). A species with a narrow ecological specialization. Larvae live under the bark of fallen, old spruce trees, usually in wet places. Sharply declined in Northern Europe due to forest management and drainage of spruce-mire moist forest. It is possible that *P. kolwensis* became extinct in large parts of southern Finland as early as the 1800s or even earlier, in regions where slash and burn cultivation was intensive at the time (Siitonen & Saaristo 2000). In Zaonezhye peninsula it survived in remains of old-growth forests. Generally, the species is widespread in Karelia, but recorded only in areas of old-grown forests with a lot of dead wood (Jakovlev et al. 2000). Threat status: Kar – 3 (NT); Len – 2 (EN); Fin – EN.

![Fig. 5. Larva of *Pytho kolwensis* (Photo Andrei Humala).](image)

Eucnemidae

Hylochares populi Brüstle & Muona

Material. Polya, 2 specimens under the bark of an old, dead aspen tree, 26/6/2013 (Humala); Tambitsy, cavities and holes on aspen trunks, 26/8/2013 (Polevoi). This species develops in large, dead aspens in old-growth forests. In Karelia, there are only two known populations in the Kondopoga and Pudozh municipalities (Ivanter & Kuznetsov 2007, Jakovlev 2009). There are also old records from the Olonets municipality (Palmén 1946). Threat status: Kar – 3 (VU); Fin – EN.

Buprestidae

Chrysobothris chrysostigma (Linnaeus, 1758) (Fig. 3)

Material. Nizhnee Myagrozero, 1 specimen on a spruce trunk near the road, 22/7/2012 (Polevoi); Vegoruksy, 1 specimen, 25/6/2013 (Kravchenko), 2 specimens on spruce

1 According to Brüstle and Muona (2009), all Karelian specimens found on aspens should be considered *H. populi*. *H. cruentatus* (Gyllenhal) develops on willows and to date is only known from southern Finland. However, some authors question the validity status of *H. populi* (Kovalev 2014).
trunks near the road, 27/6/2013 (Polevoi, Humala); 7 km south of Kosmozero, 1 specimen on a dead spruce at the edge of a clear-cut, 26/6/2013 (Polevoi).

This species develops under the bark of dying or dead conifers. In Karelia, the species is confined to old-growth forests. However, it is probably more widely distributed than previously thought. There are a few known old and modern records from southern Karelia (Palmén 1946; Humala & Polevoi 2009). Threat status: Kar – 3 (NT).

Phaenops cyanea (Fabricius, 1775) (Fig. 6)

Material. Vegoruksy, several specimens on pine trunks near the road, 27/6/2013 (Polevoi, Humala).

This species develops inside and under the bark of dead or dying pines, especially of those damaged by fire. In the past it was a common species in southern Karelia (Palmén 1946). The latest records from the vicinities of Petrozavodsk date back to 1954 (Yakovlev et al. 1986). Threat status: Kar – 3 (VU).

Nitidulidae

Cyllodes ater (Herbst, 1792)

Material. Bolshoi Klimenetsky Island 7/06/1995, 17/07/2000 (Jakovlev), Zharnikovo, 12/07/1999 (Polevoi), Lipovitsy 25/6/2013 (Humala), on the fruiting bodies of wood-growing fungi *Fomes fomentarius*, *Piptoporus betulinus* and *Pleurotus pulmonarius*. This species is relatively common in Karelia. It is associated with forests with great amount of dead aspens. Threat status: Kar – 3 (LC); Fin – NT.

Monotomidae

Rhizophagus puncticollis Sahlberg, 1837

Material. Mixed spruce dominated forest with great proportion of aspen, Kopanets Lake shore. 1 specimen (imago), under bark of dead aspen trunk, 15/07/1999 (Polevoi). This species has been drastically declining in Northern Europe due to eradication of aspen. In Karelia recorded only from southern part: Kivach Strict Nature Reserve, Kotkozero (Olonets municipality) and Gumbaritsa (SE shore of Ladoga Lake) (Siitonen et al. 1996). Threat status: Kar – 3 (NT); Fin – RE.

Melandryidae

Phryganophilus ruficollis (Fabricus, 1798)

Material. Bolshoi Klimenetsky Island, 1 specimen have been collected by window trap, 5-10.06.1995 (Jakovlev). This species develops feeding on fungal mycelia in dead wood rotten by *Fomes fomentarius* and other white rot fungi. In Northern Europe, most records are from fungus infected trunks of spruce and birch, in Sweden – also from oak (Ehnsröm & Axelsson 2002), and it has been suggested to be favoured by forest fires (Lundberg 1993). Estimated as very rare species in all countries from where it has been recorded. There are only ca. 20 records from Northern Europe, of these three records from southern Karelia: Kivach Strict Nature Reserve, Kizhi Nature Reserve (Ivanten & Kuznetsov 2007) and vicinity of Matrossy village (Kolström & Leinonen 2000). In Karelia, Finland, Sweden and Norway, *P. ruficollis* has been assessed as threatened species based on a small area of occupancy and a small distribution area due to the reduction in the area of natural forests. Threat status: Kar 2(EN); FIN – VU.
Fig. 6. Phaenops cyanea (Photo Andrei Humala).

Cerambycidae

Nivellia sanguinosa (Gyllenhal, 1827)
Material. Vikshezero, 1 ♀, on flowers at the edge of an abandoned hayfield, 28/6/2007 (Humala).
This is a rare species developing in coarse woody debris (thin trunks, stumps and branches), most often – *Alnus spp*, also birch and some other deciduous trees like *Prunus* and *Corylus* (Ehnström & Axelsson 2002). It is known from only a few records in southern Karelia (Jakovlev et al., 1986; Polevoi et al. 2005). Threat status: Kar – 4 (DD); Fin – VU.

Pedostrangalia pubescens (Fabricius, 1787)
Material. Turastamozero, 1 ♀, on flowers, 24/7/2012 (Polevoi).
The species develops in dead wood of pine (also on hardwoods in southern parts of its range). Its earlier records in Karelia are from northern Ladoga (Humala & Polevoi 2011). Threat status: Kar – 4 (DD); Fin – VU.

Leptura nigripes DeGeer, 1775 (Fig. 7)
Material. Turastamozero, 1 specimen, 20/7/2012 (Humala, Polevoi); Vegoruksy, 1 specimen, 27/6/2013 (Humala). On flowers at the edges of hayfields.
Larvae develop in dead wood of deciduous trees. The species is found in southern Karelia, although it is relatively rare across its range (Jakovlev et al. 1986). Threat status: Kar – 4 (DD); Fin – EN.
Leiopus punctulatus (Paykull, 1800)
Material. Polya, 1 specimen, on a branch of a fallen aspen, 25/8/2013 (Jakovlev). Larvae of this species feed subcortically in relatively thin dead branches of windfallen aspen trees of a dark black color caused by a fungus Encoelia fascicularis (Ascomycota). This species is probably extinct in Finland, and has been viewed as extinct since 1902 also in Sweden, but had been recently rediscovered (Lundberg & Martin 1991). To date only two locations were known in Karelia: Kivach Nature Reserve (Jaakko Mattila leg., 2002, unpubl.) and Pudozh municipality (Humala & Polevoi 2009).
Threat status: Fin – RE.

Phytoecia cylindrica (Linnaeus, 1758)
Material. Vikshezero, 1 ♀, on flowers at the edge of an abandoned hayfield, 28/6/2007 (Polevoi); Vegoruksy, 1 ♀, 25/6/2013 (Polevoi). The species develops in the stems of Apiaceae and Asteraceae. There are only a few, mostly old, records from Karelia (Silfverberg & Biström, 1981, Polevoi et al. 2005).
Threat status: Kar – 4 (DD).

Curculionidae
Ips sexdentatus (Börner 1776), or six-toothed bark beetle. Recorded from Kosmozero by Poppius (Poppius 1899) as Tomicus stenographus Duffschmidt. This is the largest species of scolytids in boreal forest zone. Larvae develop under thick bark of recently fallen old pines. Generally, six-toothed bark beetle is known as forest pest which is able to attack healthy trees of Scotch pine under outbreak conditions. However, during last century it has become extremely rare in Northern Europe. In Russian Karelia it has been recorded only in fallen logs in places of long-time storage (Jakovlev et al. 2000).
Threat status: Fin – VU.
LEPIDOPTERA

Papilionidae

Parnassius mnemosyne (Linnaeus, 1758) (Fig. 8)

Material. Velikaya Niva, numerous specimens along the road, 10/6/2000 (Humala, Polevoi).

The distribution of Clouded Apollo is limited to southern Karelia (Bolotov et al. 2012). It has first been reported from Zaonezhye (Velikaya Niva and Bolshoy Klimenetsky Island) in the middle of the 20th century (Kaisila 1947). Recently large but scattered populations have been found on the Kizhi skerries (Jakovlev et al. 1999; Gorbach & Kabanen 2010). However, its distribution on the mainland of Zaonezhye Peninsula needs to be clarified. The species is also recorded from southeastern parts of Karelia and Ladoga area (Humala 1998; Humala & Polevoi 2009; Gorbach & Reznichenko 2009). Threat status: Russia – 2; Kar – 3 (VU); Len – 2 (EN); Fin – VU.

![Parnassius mnemosyne](image)

Fig. 8. *Parnassius mnemosyne* (Photo Andrei Humala).

Lycaenidae

Thecla betulae (Linnaeus, 1758) (Fig. 9)

Material. 5 km N of Nikonova Guba, 1 ♀, along the road, 22/8/2012 (Humala). In Karelia the species is known only from old records (Gorbach & Reznichenko 2009). Threat status: Kar - 4 (DD).
Fig. 9. *Thecla betulae* (Photo Andrei Humala).

Lasiocampidae
Gastropacha quercifolia (Linnaeus, 1758)
A rare species; there are a few earlier records from the Kivach nature reserve (Kutenkova 2006).

Arctiidae
Rhyparia purpurata (Linnaeus, 1758) (Fig. 10)
Material. Vegoruksy, 2 specimens, light trap, 26/6/2013 (Polevoi, Humala); Paleostrov Island, 1 specimen, 3/7/2004 (Polevoi); Kuzaranda, 2 specimens, 4/7/2004 (Humala); Eglov island, 1 specimen 29/6/2014 (Polevoi).
The species inhabits meadows. The only other place in Fennoscandia where the species occurs is southern Finland (Hydén et al. 2006). Threat status: Fin – NT.

Fig. 10. *Rhyparia purpurata* (Photo Alexei Polevoi).
Zygaenidae

Zygaena osterodensis (Linnaeus, 1758) (Fig. 11)

This species is very endangered in Finland. It is also quite rare in Karelia, although locally abundant in Zaonezhye. Threat status: Kar – 3(NT); Fin – RE.

![Zygaena osterodensis](https://example.com/zygaena_osterodensis.jpg)

Fig. 11. Zygaena osterodensis (Photo Andrei Humala).

HYMENOPTERA

Argidae

Aprosthema hyalinopterum Conde, 1934

Vespidae

Discoelius dufourii Lepeletier, 1841

Material. Bolshoi Klimenetsky Isl., 2 km NE of Kurgenitsy, 1 ♀, 19/7/2000 (Humala).

A rare species; there are only a few records from Karelia (Polevoi et al. 2005, Polevoi & Humala 2013, Kutenkova 2006). Threat status: Kar - 3(VU); Finland – VU.

Pompilidae

Dipogon vechti Day, 1979

Material. Nizhnee Myagrozero, meadow, 1 ♀, 20/7/2012 (Humala); Myagrozero, meadow, 1 ♀, 22/7/2012 (Humala).

In Karelia, the species has only been recorded from samples from Velikaya Guba (Wolf 1967). Threat status: Fin – VU.

Crabronidae

Ectemnius spinipes (A. Morawitz, 1866)

Material. Turastamozero, meadow, 1 ♀, 20/7/2012 (Humala).

This forest-dwelling digger wasp species has not been reported previously from Karelia. Even though the species occurs in many Central European countries, it is not known from Finland and Scandinavia, west of Zaonezhye (Lomholdt 1984).
Ichneumonidae

Apechtis capulifera (Kriechbaumer, 1887)
Material. Turastamozero, 1 ♂, 24/7/2012, (Humala). This is the first record of the species in Karelia.

Perithous albicinctus (Gravenhorst, 1829)
Material. Turastamozero, meadow, 1 ♂, 21/7/2012, (Humala). This is the first record of the species in Karelia.

Zatypota albicoxa (Walker, 1874)
Material. Tambitsy, 1 ♂, 26/8/2013 (Humala).
In Karelia, cocoons of this parasitoid spider have only been found from the Lake Ladoga area. Threat status: Kar – 3 (LC).

Rossemia longithorax Humala1997
Material. Polya, 1 ♀, Malaise trap, 26/6-25/8/2013 (Humala, Polevoi).
The species is described from the Kivach nature reserve (Humala 1997 a). It has also been recorded from the Pudozh district (Humala & Polevoi 2009).

Coleocentrus exareolatus Kriechbaumer, 1894
Material. 3 km NE of Lipovitsy, 1 ♂, Malaise trap, 25/6-21/8/2013 (Humala, Polevoi).
The species is a parasite of larvae of longhorn beetles and horntails from the genus Urocerus, inhabiting coniferous tree trunks. In Karelia, it has previously been known only from the Kivach nature reserve (Humala 1997 b). Threat status: Fin – RE.

Arotes albicinctus (Gravenhorst, 1829)
Material. Verkhnee Myagrozero, 1 ♀, mixed forest, 27/7/2012 (Polevoi).
This ichneumon wasp species is associated with longhorn beetles. This is second record of the species in Karelia. It was first recorded by Walter Hellén in the surroundings of the Maselgskaya station in 1943. Threat status: Fin – EN; recommended to be included in the Red Data Book of Karelia as “requiring monitoring”.

Lycorina triangulifera Holmgren, 1859
The species has not been found in Karelia before. Threat status: Fin – VU.

Tranosemella coxalis (Brischke,1880)
Material. Bolshoi Klimenetsky Isl., 2 km NE of Kurgenitsy, 1 ♀, 19/7/2000 (Humala).
This is the first record of the species in Karelia.

Heteropelma amictum Fabricius, 1775 (=capitatum Desvignes, 1856)
Material. Tipinitsy, 1 ♀, 27/8/2013 (Humala).
This is the first record of the species in Karelia.

DIPTERA

Limoniidae

Limonia badia (Walker, 1848)
This poorly known species has been described from North America and it has only recently been discovered in Fennoscandia (Starý & Salmela 2004). There are few records from Karelia to date (Polevoi & Salmela, 2014). The species is probably an old-growth forest specialist. It is understood that its larvae develop in dead aspens (Starý & Salmela, 2004; Halme et al. 2013). Threat status: Fin – NT.
Ditomyiidae

Symmerus nobilis Lackschewitz, 1937
Material. 7 km S of Kosmozero, 1 ♂, 26/6/2013 (Polevoi).
Symmerus nobilis has been found in several Central European countries but is considered a rare species everywhere (Jakovlev et al. 2014). All the records of adults are from broadleaved forests, with the exception of Russian Karelia that lies entirely within the boreal forest zone. In Karelia, there are only two earlier records of female specimens from the Kivach nature reserve (Polevoi 2000). In Finland it has been recorded only once from Ruissalo Strict Nature Reserve, from an herb-rich spruce-dominated forest with aspen, birch, lime and oak (*Quercus robur*). Both the Finnish and the Karelian sites are old-growth forests, growing on fertile soils. There is a high amount of dead aspen wood, in which larvae of the species most probably develop. Threat status: Fin – VU.

Mycetophilidae

Boletina kivachiana Polevoi & Hedmark, 2004
Material. Turastamozero, 21 ♂♂, 21-24/7/2012 (Polevoi).
In Fennoscandia, this is a characteristic species of old-growth boreal forests. However, its distribution in Karelia is still poorly known. Threat status: Fin – VU.

Asilidae

Choerades tenebraus Esipenko, 1974
Material. Verkhnee Myagrozero, 1 ♂, edge of a clear-cut, 22/7/2012 (Polevoi).
This is the first record in the European part of Russia. The species has previously been known from Primorye, Sakhalin and Krasnoyarsk Krai in the East (Lehr, 1999). The biology of the species is not known but its larvae probably inhabit dead wood, like other species of the genus *Choerades*. Two females from the Kivach nature reserve have previously been misidentified as *Choerades marginata* (Jakovlev & Polevoi 1991, Polevoi, 1997). However, after finding the male of *Ch. tenebraus* and re-examining old samples, it has became clear that the specimens belong to the same species.

Rhagionidae

Rhagio annulatus DeGeer, 1776
Material. Kainos Island, 1 ♀, 3/7/2004 (Polevoi)
In Karelia, this species has previously been known only from the Kivach nature reserve (Polevoi 1997). Threat status: Fin – NT.

Syrphidae

Ceriana conopsoides (Linnaeus, 1758) (Fig. 12)
Material. Turastamozero, 2 ♂♂, abandoned hay meadows 20-21/7/2012 (Polevoi)
Larvae of the species develop in wet, decaying wood of deciduous trees. In Karelia, the species has been recorded previously from Petrozavodsk (Polevoi et al. 2009). There are also old and new unpublished findings from different parts of southern Karelia. Threat status: Kar – 4 (DD); Fin – NT.

Strongylophthalmidae

Strongylophthalmyia pictipes Frey, 1935
Larvae of the species develop under the bark of dead aspens. In southern Karelia, the species is relatively common in forests with a large proportion of aspen (Polevoi 1997, Humala & Polevoi 1999; Jakovlev et al. 2001, Polevoi et al. 2005). Threat status: Fin – VU.
Tachnidae

Tachina grossa Linnaeus, 1758 (Fig. 13)

Material. Turastamozero, 1 ♀, 21/7/2012 (Polevoi)

A large and distinctive species. Larvae are parasites in caterpillars of moths of the family Lasiocampidae. It is a relatively rare species, although it may be more abundant in southern areas. In 2013 it was encountered in large numbers in southern Olonets region. Threat status: Len – 3 (NT).

Fig. 12. _Ceriana conopsoides_ (Photo Andrei Humala).

Fig. 13. _Tachina grossa_ (Photo Andrei Humala).
List of insect species recorded in Zaonezhye and adjacent islands

* – species not present in the collections, is known for the studied territory from literature only
?
– doubtful identification

Abbreviations: Bol. Klim.Is. – Bolshoi Klimentovsky Island

Ephemeroptera

Ephemera vulgata L. – Vorobyi, Eglov Isl., Khvost Isl., Rogachev Isl.

Odonata

Calopterygidae

Calopteryx splendens Harr. – Turastamozero, Oyatevchina, Velikaya Niva (Valle 1952)

Calopteryx virgo L. – Kosmozero, Oyatevchina

Coenagrionidae

Coenagrion armatum Charp. – Kizhi Isl.

Ischnura elegans V.d.Lind. – Eglov Isl., Verkhnee Myagrozero

Erythromma najas Hans. – Eglov Isl., Kizhi Isl., Podyelniki

Enallagma cyathigerum Charp. – Eglov Isl., Khvost Isl., Kizhi Isl., Podyelniki, Rogachev Isl., Turastamozero, Vikshezero, Vorobyi

Lestidae

Lestes sponsa Hans. – Bol. Klim. Isl., Oyatevchina, Turastamozero

Lestes dryas Kirby – Kazhma, Kosmozero, Oyatevchina, Shun’ga, Podyelniki, Turastamozero,

Cordulegasteridae

Cordulegaster boltoni (Donovan) – Turastamozero, Vikshezero.

Gomphidae

Oncychogomphus forcipatus L. – Vikshezero

Corduliidae

Cordulia aenea L. – Bol. Klim. Isl., Eglov Isl., Kazhma, Turastamozero

Somatochlora flavomaculata V.d.Lind. – Kizhi Isl., Oyatevchina

Somatochlora metallica V.d.Lind. – Bol. Klim. Isl., Eglov Isl., Rogachev Isl., Velikaya Niva (Valla 1952)

Libellulidae

Sympetrum danae Sulzer – Kazhma, Shun’ga, Turastamozero, Vorobyi,

Leucorrhinia albifrons Burm. – Podyelniki

Leucorrhinia caudalis Charp. – Podyelniki

Libellula fulva Müller – Turastamozero

Aeshniidae

Aeshna cyanea Müll. – Tambitsy, Uzkaya Salma, Uzkaya Salma l., Tipintsy.

ORTHOPTERA

Tettigoniidae

Decticus verrucivorus L. – Bol. Klim. Isl., Kosmozero, Podyelniki, Rogachev Isl., Turastamozero, Vegoruksy

Metrioptera roeseli Hagenbach – Turastamozero, Vegoruksy

Tettigonia cantans Fuessly – Podyelniki

Tetrigidae

* *Tetrix subulata* (L.) – Zaonezhye (Albrecht 1979)

* *Tetrix tenuicornis* (Sahlberg) – Zaonezhye (Albrecht 1979)

Acrididae

Podisma pedestris (L.) – Zaonezhye (Albrecht 1979), Bol. Klim. Isl., Podyelniki, Turastamozero, Vegoruksy, Kosmozero

Omocestus viridulus L. – Khvost Isl., Kosmozero, Nizhneje Myagrozero, Podyelniki, Rogachev Isl., Turastamozero

Chorthippus brunneus (Thunb.) – Bol. Klim. Isl., Turastamozero

Pseudochorthippus montanus (Charp.) – Zaonezhye (Albrecht 1979), Turastamozero

Pseudohorthippus parallelus (Zett.) – Turastamozero

Psophus stridulus L. – Vorobyi

BLATTOPTERA

Blattellidae

Ectobius lapponicus L. – Nizhneje Myagrozero

E. sylvestris Poda – Eglov Isl., Nizhneje Myagrozero, Vegoruksy

MECOPTERA

Panorpidae

RAPHIDIOPTERA

Raphidia xanthostigma Schumm. – Zaonezhye

NEUROPTERA

Chrysopidae

Chrysopa perla L. – Kizhi Isl., Eglov Isl., Khvost Isl., Rogachev Isl.

Hemerobiidae

Drepanopteryx phalaenoides L. – Podyelniki

HEMIPTERA

Cixiidae

Cixius cunicularius L. – Eglov Isl.

? *Cixius distinguendus* Kirschbaum – Podyelniki
Membracidae
Centrotus cornutus L. – Eglov Isl.

Cicadellidae
Cicadella viridis L. – Podyelniki
Evacanthus interruptus (L.) – Turastamozero

Aphrophoridae
Aphrophora alni (Fall.) – Velikaya Niva, Nikonova Guba, Podyelniki, Turastamozero
Aphrophora pectoralis (Mats.) – Velikaya Niva, Shun’ga, Turastamozero, Velikaya Niva

Berytidae
Berytinus clavipes F. – Vegoruksy

Notonectidae
Notonecta lutea Mull. – Vorobyi

Microphysidae
Myrmedobia coleoptrata Fallen – Shun’ga

Miridae
? *Adelphocoris lineolatus* Goeze – Podyelniki
Adelphocoris cf. seticornis F. – Podyelniki
Adelphocoris quadrripunctatus F. – Nizhneje Myagrozero, Podyelniki
Adelphocoris seticornis F. – Nizhneje Myagrozero, Podyelniki
Atractotomus parvulus Reuter – Uzkaya Salma
Capsus ater L. – Vegoruksy
Capsus wagneri Rem. – Podyelniki, Rogachev Isl.
Closterotomus biclavatus (H-Sch.) – Uzkaya Salma.
Closterotomus fulvomaculatus DeGeer – Polya
? *Dicyphus constrictus* Boheman – Tambitsy
Globiceps flavomaculatus Deg. – Podyelniki
? *Globiceps juniperi* Reuter – Podyelniki
Halticus apterus L. – Podyelniki
Labops sahlbergii Fallen – Eglov Isl.
Leptopterna dolabrata L. – Eglov Isl., Nizhneje Myagrozero, Rogachev Isl., Turastamozero, Vegoruksy
Megaloceroea recticornis Geoffr. – Nizhneje Myagrozero
? *Monalocoris filicis* L. – Tipintsi
? *Orthops kalmii* L. – Nizhneje Myagrozero, Vegoruksy
? *Plagiognathus arbustorum* F. – Podyelniki
Polymerus palustris Reut. – Oyatevschina, Podyelniki
Polymerus unifasciatus Fabricius – Rogachev Isl.
Stenodema holsata F. – Tambitsy, Tipintsi
Stenotus binotatus F. – Oyatevschina, Podyelniki

Nabiiidae
Dolichonabis limbatus Dhlb. – Podyelniki, Tambitsy, Turastamozero
Nabhis flavomarginatus Scholtz – Nikonova Guba, Nizhneje Myagrozero, Podyelniki, Shun’ga, Turastamozero

Anthocoridae
Anthocoris nemorum (L.) – Podyelniki, Turastamozero

Coreidae
Coreus marginatus L. – Eglov Isl., Podyelniki, Turastamozero

Rhopalidae
Corizus hyoscyami L. – Eglov Isl., Oyatevschina, Podyelniki, Turastamozero
Myrmus mirformis Fallen – Vegoruksy
Stictopleurus punctatonervosus (Goeze) – Oyatevschina, Podyelniki, Tipinitsy

Acanthosomatidae
Acanthosoma haemorrhoidale L. – Vegoruksy
Elasmostethus interstinctus L. – Tipinitsy
Elasmucha betulac Deg. – Podyelniki, Velikaya Niva
Elasmucha ferrugata F. – Tambitsy
Elasmucha grisa L. – Velikaya Niva

Aradidae
Aradus betulae F. – Lipovitsy
Aradus depressus F. – Nizhneje Myagrozero
Aradus pictus Baerenbrg – Lipovitsy, Vegoruksy

Lygaeidae
Drymus brunneus R.F. Sahlberg – Uzkaya Salma
? Nysius thymi Wolff – Oyatevschina

Pentatomidae
Neottiglossa pusilla Gmel. – Eglov Isl., Podyelniki, Tipinitsy
? Carpocoris pucicus Poda – Oyatevschina
Carpocoris purpureipennis Deg. – Eglov Isl., Lipovitsy, Nizhneje Myagrozero, Podyelniki, Turastamozero
Aelia acuminata (L.) – Podyelniki, Tipinitsy, Vegoruksy
Chlorochroa pinicola Mulsant & Rey – Kazhma, Nizhneje Myagrozero
Eurydema oleracea L. – Nizhneje Myagrozero
Picromerus bidens L. – Velikaya Niva, Nikonova Guba, Podyelniki, Shun’ga, Turastamozero, Vegoruksy.
Troilus luridus Fabricius – Nikonova Guba, Shun’ga

COLEOPTERA (Nomenclature follows Silfverberg 2010. Species’ names within families appear in the alphabetic order)

ADEPHAGA
Gyrinidae
*Gyrinus marinus Gyllenhal – Tolvuya, Shun’ga (Poppius 1899)

Halipidae
*Haliphus fluviatilus Aubé – Tolvuya (Poppius 1899)
* Haliphus fulvus (Fabricius) – Shun’ga (Poppius 1899)
*Haliphus furcatus Seidlitz – Tolvuya (Poppius 1899)
*Haliphus lineolatus Mannerheim – Shun’ga (Poppius 1899)
*Haliphus rufigollis DeGeer – Tolvuya, Kosmozero (Poppius 1899)

Dytiscidae
*Acatodiles fuscipennis Paykull var. obscurior J.Sahlb. – Tolvuya (Poppius 1899)
Acilus canaliculatus Nicolai – Podyelniki
* Agabus biguttulus Thomson – Zaonezhye (Poppius 1899)
* Agabus congener (Thunberg) – Zaonezhye (Poppius 1899)
* Agabus setulosus J.Sahlb. – Tolvuya (Poppius 1899)
* Agabus uliginosus L. – Tolvuya (Poppius 1899)
*Agabus sturmii (Gyllenhal) – Tolvuya (Poppius 1899)
*Bidessus unistriatus (Goeze) – Kizhi Isl., Tolvuya, Velikaya Guba (Poppius 1899)
*Coeolobus impresspunctatus (Schaller) – Tolvuya, Velikaya Guba (Poppius 1899)
Colymbetes paykull Er. – Velikaya Guba (Poppius 1899), Oyatevschina, Podyelniki
*Colymbetes striatus L. – Tolvuya (Poppius 1899)
Dytiscus marginalis L. – Tolvuya (Poppius 1899)

Graptodytes granularus (L.) – Tolvuya (Poppius 1899)

Heterocerus fuculus Kiesenwetter – Oleny Island (Poppius 1899)

Hydroporus affrionis (Müller) – Kosmozero, Tolvuya (Poppius 1899)

? *Hydroporus fennicus* Seidlitz – Kosmozero, Velikaya Guba (Poppius 1899)

Hydroporus erythrocephalus (L.) – Kosmozero, Tolvuya (Poppius 1899)

Hydroporus pubescens (Gyllenhal) – Tolvuya (Poppius 1899)

Hydroporus melanarius Sturm – Velikaya Guba (Poppius 1899)

Hydroporus obscurus Sturm – Kizhi Isl., Tolvuya (Poppius 1899)

Hydroporus tristis Paykull – Velikaya Guba (Poppius 1899)

Hydroporus inaequalis (Fabricius) – Tolvuya (Poppius 1899)

Ilybius obscurus Marshall – Tolvuya (Poppius 1899)

Ilybius wasastjernae Sahlberg – Velikaya Guba (Poppius 1899)

Nebrioporus depressus (Fabricius) – Kizhi Isl., Tolvuya (Poppius 1899)

Noterus crassicornis Fabricius – Kizhi Isl., Oleny Island (Poppius 1899)

Parnus prolifericornis Fabricius – Kosmozero, Tolvuya, Shun’ga (Poppius 1899)

Rantus bistriatus (Bergsträsser) – Tolvuya (Poppius 1899)

Carabidae

Agonum afrum (Duftschmid) – Velikaya Guba, Shun’ga (Poppius 1899)

Agonum gracile Sturm – Shun’ga (Poppius 1899)

Agonum viduum (Panzer) – Shun’ga (Poppius 1899)

Amara apricaria Paykull – Shun’ga (Poppius 1899)

Amara aulica Panz. – Unitsa (Poppius 1899)

Amara communis Panzer – Tolvuya, Kosmozero (Poppius 1899)

Amara familiaris (Duftschmid) – Tolvuya (Poppius 1899)

Carabus glabratus L. – Tolvuya, Kosmozero, B. Klim. Island, Vegoruksy

Carabus violaceus L. – B. Klim. Isl.

Clivina fossor L. – Shun’ga (Poppius 1899)

Cychrus caraboides L. – B. Klim. Isl. (Poppius 1899), Kosmozero

Dromius agilis L. – Unitsa (Poppius 1899), B. Klim. Island, Lipovitsy
POLYPHAGA

HYDROPHILOIDEA

Hydrophilidae

Berosus luridus L. – Velikaya Guba (Poppius 1899)

Laccobius minutus L. – Kosmozero, Tolvuya, Shun’ga (Poppius 1899)

Phyidurus frontalis Er. – Velikaya Guba, Tolvuya (Poppius 1899)

Chaeretrella seminulum Paykull – Shun’ga (Poppius 1899)

Coelostoma orbiculare Fabricius – Velikaya Guba (Poppius 1899)

Cercyon haemorrhoidalis (Fabricius) – Velikaya Guba, Shun’ga (Poppius 1899)

Cercyon unipunctatus (L.) – Velikaya Guba (Poppius 1899)

Cryptopleurum atomarium (Fabricius) – Velikaya Guba, Tolvuya (Poppius 1899)

Helophorus aquaticus (L.) – Tolvuya, Shun’ga (Poppius 1899)

Hydrochus elongatus (Schaller) – Kosmozero (Poppius 1899)

Hydrochus brevis (Herbst) – Kizhi Isl. (Poppius 1899)

HISTEROIDEA

Sphaeritidae

*Sphaerites glabratu*s (Fabricius) – Bol. Klim.Isl.

Histeridae

Platysoma minus (Rossi) – Kizhi Isl. (Poppius 1899)

Platysoma deplanatum (Gyllenhal) – Kizhi Isl. (Poppius 1899)

Margarinotus ventralis (Marseul) – Kizhi Isl. (Poppius 1899)

STAPHYLINOIDEA

Hydraenidae
Limnebius truncatellus (Thunberg) – Kizhi Isl., Kosmozero, Tolvuya, Shun’ga (Poppius 1899)

Ptiliidae
Acrorochis grandidollis Mannerheim – Kosmozero (Poppius 1899)
Acrorochis thoracica (Waltl) – Shun’ga (Poppius 1899)
Acrorochis montandonii (Allibert) – Unitsa (Poppius 1899)
Pteryx suturalis (Heer) – Unitsa (Poppius 1899)
Ptiliolum caledonicum (Sharp) – Unitsa (Poppius 1899)

Leiodidae
Leiodes gyllenhalii Stephens – Kizhi Isl., Tolvuya (Poppius 1899)
Leiodes polita (Marsham) – Unitsa (Poppius 1899)
Agathidium confusum Bris. de Barn. – Bol. Klim. Isl.
Agathidium pisanaum Bris. de Barn. – Bol. Klim.Isl.
Necrodes littoralis (L.) – Unitsa (Poppius 1899), Podyelniki
Nicrophorus vespillo (L.) – Bol. Klim.Isl.
Phosphuga atrata (L.) – Vorobyi

Silphidae
Necrodes littoralis (L.) – Unitsa (Poppius 1899), Podyelniki
Nicrophorus vespillo (L.) – Bol. Klim.Isl.

Staphylinidae
Acrotona aterrima Gravenhorst – Shun’ga , Tolvuya (Poppius 1899)
Acyrria inflata Gyllenhal – Kizhi Isl. (Poppius 1899)
Amisha analis Gravenhorst – Shun’ga (Poppius 1899)
Anthobium longipanne Er. – Kosmozero (Poppius 1899)
Anthobium ophthalmicum Paykull – Kizhi Isl., Kosmozero (Poppius 1899)
Atheta celata Er. – Unitsa (Poppius 1899)
Baptolinus alternans Gravenhorst – Velikaya Guba (Poppius 1899)
Baryodma alternans Gravenhorst – Unitsa (Poppius 1899)
Baryodma lugubris Aubé – Tolvuya (Poppius 1899)
Baryodma nitida Gravenhorst – Kizhi Isl. (Poppius 1899)
Bledius fracticornis Paykull – Shun’ga (Poppius 1899)
Bolitochara pulchra (Gravenhorst) – Kosmozero (Poppius 1899)
Bryaxis bulbifer Reich. – Shun’ga (Poppius 1899)
Creophilus maxillosus L. – Shun’ga (Poppius 1899)
Cryptobium fractocone Paykull – Shun’ga (Poppius 1899)
Dinarcaea aequala Er. – Kizhi Isl., Velikaya Guba (Poppius 1899)
<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etheothassa concinna Marsh.</td>
<td>Kizhi Isl.</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Euplectus karsteni Reichenbach</td>
<td>Kizhi Isl.</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Gabrius splendidulus Gravenhorst</td>
<td>Kizhi Isl., Kosmozero</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Gabrius trossulus Nordmann</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Geodromicus plagiatus Fabricius, var. nigrita Mull.</td>
<td>Tolvuya</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Gyrophaena laevipennis Kr.</td>
<td>Kosmozero, Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Gyrophaena manca Er.</td>
<td>Kosmozero, Zetterstedt</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Haploderus caelatus Gravenhorst</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Ischnosoma splendida Gravenhorst</td>
<td>Kosmozero, Velikaya Guba</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Leptusa analis Gyllenhal</td>
<td>Kizhi Isl.</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Lordithon lunulatus L.</td>
<td>Kurgenitsy</td>
<td></td>
</tr>
<tr>
<td>Micruraus xantopus Er.</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Omalium caesum Gravenhorst</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Omalium excavatum Steph.</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Othius lapidicola Kiesw.</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Oxytipes maxillosus Fabricius</td>
<td>Kurgenitsy</td>
<td></td>
</tr>
<tr>
<td>Oxytipes rufus (L.)</td>
<td>Kurgenitsy</td>
<td></td>
</tr>
<tr>
<td>Oxytipes fulvipes Er.</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Oxytipes rugosus Sahlb.</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus agilis Gravenhorst</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus cephalotes Gravenhorst</td>
<td>Kizhi Isl., Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus fulvipes Fabricius</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus micans Gravenhorst</td>
<td>Tolvuya</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus opacus Gyllenhal</td>
<td>Kizhi Isl., Shun’ga, Tolvuya</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus sordidus Gravenhorst</td>
<td>Kizhi Isl.</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus splendens Fabricius</td>
<td>Kizhi Isl.</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Philonthus umbratilis Gravenhorst</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Phylodrepa rufipes Geoffroy</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Placusa infima Er.</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Placusa pumilio Er.</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Platystethus nodufrons Sahlb.</td>
<td>Tolvuya</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Raphirus attenuatus Gyllenhal</td>
<td>Tolvuya, Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Raphirus umbrinus Er.</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Scaphisoma subalpinum Reitter</td>
<td>Kizhi Isl., Kosmozero</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus bifoveolatus Gyllenhal</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus biguttatus L.</td>
<td>Tolvuya</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus canaliculatus Gyllenhal</td>
<td>Tolvuya</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus carbonarius Gyllenhal</td>
<td>Kizhi Isl., Shun’ga, Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus fuscicornis Steph.</td>
<td>Kizhi Isl.</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus fusciger Steph.</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus fuscipes Gravenhorst</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus melanarius Steph.</td>
<td>Kizhi Isl., Oleny Island</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus nanus Steph.</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus nitens Steph.</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus oculatus Gravenhorst</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus opacus Gyllenhal</td>
<td>Unitsa</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus palposus Zetterstedt</td>
<td>Shun’ga</td>
<td>Poppius 1899</td>
</tr>
<tr>
<td>Stenus proditor Er.</td>
<td>Velikaya Guba</td>
<td>Poppius 1899</td>
</tr>
</tbody>
</table>
Stenus pussilus Steph. – Kizhi Isl. (Poppius 1899)
Stenus scabriculus J.Sahlb. – Unitsa (Poppius 1899)
Stenus specularis (Lac.) – Kuzaranda, Shun’ga (Poppius 1899)
Stenus tarsatus Ljung. – Kizhi Isl., Kosmozero, Shun’ga, Tolvuya, Velikaya Guba (Poppius 1899)
Stenus vafellus Er. – Velikaya Guba (Poppius 1899)
Tachinus collaris Gravenhorst – Shun’ga (Poppius 1899)
Tachinus fimetarius Gravenhorst – Kizhi Isl. (Poppius 1899)
Tachinus laticollis Gravenhorst – Velikaya Guba (Poppius 1899)
Tachinus marginatus Gyllenhal – Tolvuya (Poppius 1899)
Tachyporus obtusus L. – Tipinitsy
Tachyporus scitulus Er. – Unitsa (Poppius 1899)
Tanytarsus laqueatus Marsh. – Kizhi Isl. (Poppius 1899)
Trichoderma pubescens DeGeer. – Bol. Klim. Isl. (Poppius 1899)
Xantholinus distans Muls. & Rey. – Unitsa (Poppius 1899)

SCARABAEOIDEA

Lucanidae
Ceruchus chrysomelinus (Hochenwarth) – Lipovitsy

Geotrupidae

Scarabaedidae
Aphodius merdarius Fabricius – Velikaya Guba (Poppius 1899)
Aphodius niger (Panzer, 1797) – Tolvuya (Poppius 1899)
Aphodius plagiaetus (L.) – Tolvuya (Poppius 1899)
Aphodius prodromus (Brahm) – Velikaya Guba (Poppius 1899)
Aphodius punctatosulcatus Sturm – Velikaya Guba (Poppius 1899)
Aphodius sordidus (Fabricius) – Tolvuya (Poppius 1899)
Cetonia aurata (L.) – Bol. Klim. Isl.
Onthophagus nuchicornis (L.) – Kizhi Isl. (Poppius 1899)

SCIROTOIDEA

Sciritidae
Microcara testacea (L.) – Tolvuya (Poppius 1899), Khvost Isl.
Cyphon variabilis (Thunberg) – Kosmozero (Poppius 1899)

Melyridae
Dasytes niger (L) – Kosmozero, Shun’ga, Tolvuya (Poppius 1899)

DASCILLOIDEA

Dascillidae
BUPRESTOIDEA

Buprestidae

Anthaxia quadripunctata (L.) – Tolvuya (Poppius 1899), Oyatevschina, Vegeruksy, Uzkaya Salma

Chrysobothris chrysostigma (L.) – Nizhnee Myagrozero, Kosmozero, Vegeruksy

Habroloma nanum (Paykull) – Kizhi Isl. (Poppius 1899)

Phaenops cyanea (Fabricius) – Vegeruksy

Trachys minutus L. – Khvost Isl.

BYRRHOIDEA

Byrrhidae

Byrrhus pilula (L.) – Kizhi Isl. (Poppius 1899)

Byrrhus pustulatus (Forster) – Kizhi Isl. (Poppius 1899)

Cylilus auricomus (Duftschmid) – Kosmozero (Poppius 1899)

DRYPOIDEA

Elmidae

Normandia nitens (Müller) – Shun’ga (Poppius 1899)

ELATEROIDEA

Eucnemidae

Hylachaerae populi Muona & Brustle – Polya, Tambitsy

Elateridae

Ampedus cinnabarinus (Eschschtoltz) – Kizhi Isl. (Poppius 1899)

Ampedus pomorum (Herbst) – Kosmozero (Poppius 1899)

Ampedus sanguineus (L.) – Oyatevschina

Acanthius aterrimus (L.) – Kizhi Isl. (Poppius 1899)

Ctenicera cuprea (Fabricius) – Eglov Isl., Khvost Isl., Rogachev Isl.

Daldopius marginatus (L.) – Shun’ga (Poppius 1899), Bol. Klim. Isl.

Denticollis borealis (Paykull) – Kizhi Isl. (Poppius 1899)

Ectinus atterrimus (L.) – Kizhi Isl. (Poppius 1899)

Lacon fasciatus (L.) – Tolvuya, Velikaya Guba (Poppius 1899)

Oedostethus quadripustulatus (Fabricius) – Tolvuya, Kosmozero (Poppius 1899)

Prosternon tessellatum (L.) – Kizhi Isl., Velikaya Guba (Poppius 1899), Eglov Isl., Rogachev Isl.

Selatosomus aeneus (L.) – Eglov Isl., Rogachev Isl.

Selatosomus melancholicus (Fabricius) – Bol. Klim. Isl.
CANTHAROIDEA

Lycidae

Dictyoptera aurora (Herbst) – Velikaya Guba (Poppius 1899), Kurgenitsy

Lropheros rubens (Gyllenhal) – Vikshezero

Platyctis minutus Fabricius – Turastamozoero

Lampyriæ

Lampyrus noctiluca L. – Kizhi Isl., Kosmozero, Uzkaya Salma, Velikaya Guba (Poppius 1899), Bol. Klim. Isl., Kizhi

Cantharidae

Cantharis flavilabris Fallén – Kosmozero, Shun’ga, Tolvuya (Poppius 1899)

Cantharis nigricans (Müller) – Eglov Isl., Rogachev Isl.

Cantharis pellucida Fabricius – Lipovitsy, Rogachev Isl.

Malthinus punctatus (Geoffroy) – Kosmozero (Poppius 1899) Eglov Isl., Khvost Isl., Uzkaya Salma

Malthodes flavoguttatus Kiesenwetter – Tolvuya (Poppius 1899)

Malthodes fuscus Waltl – Uzkaya Salma

Malthodes mysticus Kiesenwetter – Schun’ga (Poppius 1899)

Malthodes mauryus (Laporte de Castelnau) – Kizhi Isl. (Poppius 1899)

Podabrus lapponicus (Gyllenhal) – Velikaya Guba (Poppius 1899)

Rhagonycha atra (L.) – Kizhi Isl., Kosmozero (Poppius 1899), Bol. Klim. Isl. Lipovitsy

Rhagonycha lignosa (Müller) – Eglov Isl., Lipovitsy, Polya

Rhagonycha nigriventris Motschulsky – Khvost Isl., Polya

Rhagonycha testacea (L.) – Kizhi Isl. (Poppius 1899)

BOSTRICOIDEA

Dermestidae

Dermestes lardarius L. – Kizhi Isl.

Trogoderma glabrum (Herbst) – Kizhi Isl.

Anthrenus museorum (L.) – Shun’ga (Poppius 1899), Kizhi Isl., Oyatevschina

Anobiidae

Caenocara bovistae (Hoffmann) – Kizhi Isl. (Poppius 1899)

Hadrobregmus confusus (Kraatz) – Kizhi Isl.

Priobium carpini (Herbst) – Kizhi Isl., Kosmozero, Shun’ga (Poppius 1899), Kizhi Isl.

Ptinus raptor Sturm – Kizhi Isl.

Ptinus villiger Reitter – Kizhi Isl.
LYMEXYLOIDEA
Lymexylonidae

CLEROIDEA
Trogossitidae
Grynocharis oblonga (L.) – Kizhi Isl.
Ostoma ferruginea (L.) – Uzkaya Salma, Bol. Klim.Isl., Kosmozero, Lipovitsy
Peltis grossa (L.) – Dianova Gora (Poppius 1899), Lipovitsy, Kurgenitsy

Cleridae
Thanasimus formicarius L. – Vikshezero

Dasytidae
Dasynus niger (L.) – Rogachev Isl.
Dolichosoma lineare (Rossi) – Eglov Isl., Rogachev Isl.

Malachidae
Malachius bipustulatus (L.) – Velikaya Guba (Poppius 1899), Eglov Isl., Kizhi Isl., Vikshezero

CUCUJOIDEA
Kateretidae
Brachypterolus pulcarius (L.) – Kizhi Isl. (Poppius 1899)
Brachypterus urticae (Fabricius) – Shun’ga (Poppius 1899)
Kateretes pusillus (Thunberg) – Kosmozero (Poppius 1899)

Nitidulidae
Cyllodes ater Herbst. – Kurgenitsy, Oyatevschina, Lipovitsy, Uzkaya Salma, Volkostrov Isl.
Epuraea lapponica (J.Sahlberg) – Shun’ga, Tolvuya (Poppius 1899)
Epuraea longula Ericson – Velikaya Guba (Poppius 1899)
Epuraea marsculi Reitter – Velikaya Guba (Poppius 1899)
Epuraea pallescens (Stephens) – Kizhi Isl., Tolvuya (Poppius 1899)
Epuraea terminalis (Mannerheim) – Unitsa (Poppius 1899)
Glischrochilus quadripunctatus (L.) – Bol. Klim. Isl., Tipinitsy, Vikshezero
Ipida binotata Reitter – Volkostrov Isl.
Meligethes aeneus (Fabricius) – Kosmozero, Tolvuya (Poppius 1899)
Meligethes flavimanus Stephens, 1830 – Unitsa (Poppius 1899)
Meligethes subrugosus (Gyllenhal, 1808) – Kizhi Isl., Tolvuya (Poppius 1899)
Meligethes viidtius Sturm – Shun’ga, Kosmozero (Poppius 1899)
Pityophagus ferrugineus L. – Volkostrov Isl.
Pocadius ferrugineus (Fabricius) – Velikaya Guba (Poppius 1899), Bol. Klim. Isl.

Monotomidae
Rhizophagus bipustulatus (Fabricius) – Shun’ga, Kosmozero (Poppius 1899)
Rhizophagus puncticollis Sahlberg – Kopanets Lake, Kurgenitsy

Silvanidae
Silvanus unidentatus (Olivier) – Dianova Gora, Velikaya Guba (Poppius 1899)

Phalacridae
Phalacrius substriatus Gyllenhal – Kizhi Isl., Kosmozero, Shun’ga, Tolvuya, Velikaya Guba (Poppius 1899)

Cryptophagidae
Anthrophagus pullens (L.) – Kizhi Isl. (Poppius 1899)
Atomaria fuscata (Schönherr) – Unitsa, Velikaya Guba (Poppius 1899)
Atomaria peltata Kraatz – Unitsa (Poppius 1899)

Erotylidae

Phalacridae
Phalacrius substriatus Gyllenhal – Kizhi Isl., Kosmozero, Shun’ga, Tolvuya, Velikaya Guba (Poppius 1899)

Cryptophagidae
Anthrophagus pullens (L.) – Kizhi Isl. (Poppius 1899)
Atomaria fuscata (Schönherr) – Unitsa, Velikaya Guba (Poppius 1899)
Atomaria peltata Kraatz – Unitsa (Poppius 1899)

Erotylidae

Triplax aenea Schall. – Bol. Klim. Isl., Lipovitsy, Kosmozero

Triplax rufipes Fabricius – Vikshezero

Triplax scutellaris (Charp.) – Kurgenitsy

Byturidae

Cerylonidae

Cerylon ferrugineum Stephens – Volkostrov Isl.

Cerylon histeroides (Fabricius) – Kosmozero, Unitsa (Poppius 1899), Bol. Klim. Isl.

Endomychidae

Endomychus coccineus (L.) – Volkostrov Isl.

Coccinellidae

Anatis ocellata L. – Turastamozero

Anisosticta novemdecimpunctata L. – Vorobyi

Calvia quatuordecimguttata L. – Oyatevschina, Podyelniki, Rogachev Isl., Turastamozero

Chilocorus renipustulatus Scriba – Turastamozero

Coccinella hieroglyphica L. – Eglov Isl., Podyelniki, Turastamozero, Verkhnee Myagrozero

Coccinella magnifica Redtenbacher – Unitsa (Poppius 1899)

Coccinula quatuordecimpunctata L. – Vorobyi, Eglov Isl., Oyatevschina, Podyelniki, Verkhnee Myagrozero, Vikshezero

Hippodamia notata L. – B. Klim. Isl., Oyatevschina, Podyelniki, Uzkaya Salma, Vegeruksy, Vorobyi

Hippodamia septenmaculata DeGeer – Vorobyi

Myrrha octodecimguttata L. – Kizhi Isl. (Poppius 1899), Eglov Isl., Turastamozero

Myzia oblongoguttata (L.) – Vegeruksy, Eglov Isl.

Coccinella magnifica Redtenbacher – Unitsa (Poppius 1899)

Propylea quatuordecimpunctata L. – Vorobyi, Eglov Isl., Podyelniki, Rogachev Isl., Tipinitys, Turastamozero, Vikshezero

Psyllobora vigintiduopunctata (L.) – Vorobyi, Eglov Isl., Tambitsy, Vegeruksy, Vikshezero

Latridiidae

Corticaria fuscula (Gyllenhal) – Kizhi Isl., Kosmozero, Shun’ga, Velikaya Guba (Poppius 1899)

Corticaria ferruginea Marsh – Tolvuya (Poppius 1899)

Corticaria lateritia Mannerheim – Oleny Isl. (Poppius 1899)
Corticaria pubescens (Gyllenhal) – Shun’ga (Poppius 1899)
Latridius minutus (L.) – Shun’ga (Poppius 1899)
Stephanastethus lardarius (DeGeer) – Oleny Isl. (Poppius 1899)

Mordellidae

Mordellochroa abdominalis (Fabricius, 1775)– Kuzaranda (Poppius 1899)
Mordella holomelaena Apfelbeck – Shunevskiy Isl.
Mordellistena humeralis (L.) – Shun’ga (Poppius 1899), Shunevskiy Isl.
Mordellistena pumila (Gyllenhal, 1810)– Vorobyi

Tenebrionoidea

Myctophagidae

Myctophagus decempunctatus Fabricius – Kizhi Isl. (Poppius 1899)
Myctophagus piceus (Fabricius) – Velikaya Guba (Poppius 1899), Bol. Klim. Isl.
Myctophagus quadripustulatus (L.) – Velikaya Guba (Poppius 1899), Kurgenitsy, Volkostrov Isl.

Ciidae

Cis comptus (Gyllenhal) – Dianova Gora, Schun’ga, Unitsa (Poppius 1899)
Cis bidentatus (Olivier) – Kosmozero (Poppius 1899)
Cis jacquemartii Mellié – Bol. Klim. Isl.
Cis micans (Fabricius) – Dianova Gora, Unitsa (Poppius 1899), B. Klim. Isl.
Cis rugulosus Mellié – Schun’ga (Poppius 1899)
Dolichocis laricinus (Mellié, 1848) – Kosmozero (Poppius 1899)
Octotemnus glabriculus (Gyllenhal) – Dianova Gora (Poppius 1899)
Sulcacis fronticornis (Panzer, 1805) – Dianova Gora (Poppius 1899)

Tenebrionidae

Myctochara flavipes (Fabricius) – Kizhi Isl., Rogachev Isl.
Tenebrio molitor L. – Unitsa (Poppius 1899)
Uloma culinaris (L.) – Unitsa (Poppius 1899)

Oedemeridae

Chrysanthia geniculata Heyden – Nizhneje Myagrozero, Verkhnee Myagrozero
Chrysanthia viridissima (L.) – Kosmozero, Tolvuya (Poppius 1899), Bol. Klim. Isl.
Oedemera virescens L. – Rogachev Isl.

Tetratomidae

Tetratoma ancora (Fabricius) – Bol. Klim. Isl.
Melandryidae
Orchesia fasciata (Illiger) – Bol. Klim. Isl., Podyelniki
Phryganophilus ruficollis (Fabricius) – Bol. Klim Isl.
Xylita laevigata (Hellenius) – Bol. Klim Isl.

Pythidae
Pytho depressus (L.) – Bol. Klim. Isl., Velikaya Guba (Poppius 1899), Kosmozero, Uzkaya Salma
Pytho kolwensis Sahlberg – Lipovitsy, Polya, Tambitsy

Pyrochroidae
Schizotus pectinicornis (L.) – Zaonezhye (Poppius 1899), Bol. Klim. Isl.

Anthicidae Latreille, 1819
Notoxus monoceros (L.) – Tolvuya (Poppius 1899)

Scaptiidae
Anaspis frontalis (L.) – Kizhi Isl., Kosmozero, Oleny Isl., Shun’ga, Velikaya Guba (Poppius 1899)

Salpingidae
Salpingus planirostris (Fabricius) – Shun’ga (Poppius 1899), Kizhi Isl.
Salpingus ruficollis L. – Zaonezhye
Sphaeriestes stockmanni (Biström) – Kizhi Isl. (Poppius 1899)

CHRYSOMELOIDEA

Cerambycidae
Acmaeops pratensis (Laicharting) – Kizhi Isl. (Poppius 1899)
Aegomorphus clavipes (Schrank) – Kosmozero (Poppius 1899), Bol. Klim. Isl., Verkhnee Myagrozero
Agapanthia villosoviridescens DeGeer – Rogachev Isl.
Anoplodera livida (Fabricius) – Podyelniki, Vorobyi
Anoplodera reyi (Heyden) – Podyelniki, Kuzaranda, Eglov Isl., Kainos Isl., Nizhnje Myagrozero, Polya, Turastamozero, Uzkaya Salma, Vegoruksy, Verkhnee Myagrozero
Anoplodera sanguinolenta L. – Podyelniki, Nizhnje Myagrozero, Oyatevshchina, Vikshezero
Arhopalus rusticus (L.) – Kizhi Isl., Velikaya Guba (Poppius 1899)
Callidium coriaceum Paykull – Velikaya Guba (Poppius 1899), Bol. Klim. Isl., Lipovitsy, Vikshezero
Callidium violaceum (L.) – Kizhi Isl.
Gaurotes virginea L. – Velikaya Guba (Poppius 1899), Lipovitsy, Vegoruksy, Uzkaya Salma, Tipinitsy, Vikshezero
Judolia sexmaculata L. – Kuzaranda (Poppius 1899), Bol. Klim. Isl., Turastamozero
Leiopus punctulatus (Paykull) – Polyá
Leptura nigripes (DeGeer) – Velikaya Guba (Poppius 1899), Podyelniki, Oyatevschina, Turastamozero, Vegoruksy
Leptura pubescens Fabricius – Turastamozero
Leptura quadripunctata L. – Kosmozero (Poppius 1899), Kizí Isl., Nizhneje Myagrozero, Oyatevschina, Podyelniki, Turastamozero, Vorobyi
*Melorchus minor (L.) – Kizí Isl. (Poppius 1899)
Monochamus galloprovincialis Olivier – Tolvuya (Poppius 1899), Podyelniki, Nizhneje Myagrozero
Monochamus sutor L. Turastamozero, Nizhneje Myagrozero
Monochamus urussovi Fischer von Waldeheim – Turastamozero, Nizhneje Myagrozero, Oyatevschina
Necydalis major L. – Kosmozero, Kurgenitsy
Nivellia sanguinosa (Gyllenhal) – Oyatevschina, Vikshezero
Pachyta quadriramuláta L. – Kosmozero, Nizhneje Myagrozero, Podyelniki
Pedostrangalia pubescens (Fabricius) – Turastamozero.
Rhagium inquisitor L. – Lipovitsy
Saperda peroráta Pallas – Verkhnee Myagrozero
*Saperda scalarís (L.) – Kizí Isl. (Poppius 1899)
Tetropium castaneum (L.) – Lipovitsy
Tetrops praeustá (L.) – Tolvuya (Poppius 1899), Rogachev Isl.
Xylotrechus rusticus (L.) – Bol. Klim. Isl., Turastamozero, Nizhneje Myagrozero
Chrysomelidae
*Altica olerácea (L.) – Tolvuya (Poppius 1899)
*Aphthona erichsoni (Zetterstedt) – Unitsa (Poppius 1899)
(Bilfverberg 1987)
Bromius obscurus L. – Podyelniki, Eglov Isl., Khvost Isl., Kizí Isl., Nizhneje Myagrozero, Oyatevschina, Rogachev Isl., Tipintsy, Vegoruksy, Vikshezero
*Cassida dénticolís Suffrian – Kizí Isl., Oleny Isl. (Poppius 1899)
*Cassida nebulósa L. – Shun’ga (Poppius 1899)
*Cassida rubígínsa Müller – Shun’ga (Poppius 1899)
*Cassida sanguinósa Suffrían – Kosmozero, Tolvuya (Poppius 1899)
*Cassida virídís L. – Verkhnee Myagrozero
*Chaetocnema aerósa (Letznér) – Shun’ga (Poppius 1899)
*Chaetocnema arídula (Gyllenhal, 1827) – Kuzaranda (Poppius 1899)
polítá (L.) – Tolvuya (Poppius 1899), Eglov Isl.
*Chrysolina hyperíci (Forster) – Kizí Isl. (Poppius 1899)
Chrysolina varíans (Schaller) – Podyelniki, Nizhneje Myagrozero, Verkhnee Myagrozero, Vikshezero
Chrysomela colláris L. – Kosmozero, Tolvuya (Poppius 1899), Uzkaya Sałma
Chrysomela cupréa Fabricius – Kizí Isl. (Poppius 1899), Vorobyi
Chrysomela lapponíca L. – Oleny Isl. (Poppius 1899), Tipintsy, Turastamozero, Uzkaya Sałma, Verkhnee Myagrozero
 Clytra quadripunctata L. – Eglov Isl.
Crepídóderá fulvicornois Fabricius – Tipintsy
Cryptocephalus aureolus Suffrian – Vikshezero, Vorobyi, Zaonezhye (Silfverberg 1987)

*Cryptocephalus bipunctatus (L.) – Kosmozero (Poppius 1899), Zaonezhye (Silfverberg 1987)

*Cryptocephalus cordiger (L.) – Kizhi Isl. (Poppius 1899), Zaonezhye (Silfverberg 1987)

*Cryptocephalus coryli L. – Rogachev Isl.

*Cryptocephalus distinguendus Schneider – Bol. Klim. Isl., Kizhi Isl. (Poppius 1899), Zaonezhye Chrysolina

*Cryptocephalus exiguus Schneider – Kosmozero, Shun’ga, Velikaya Guba (Poppius 1899), Zaonezhye (Silfverberg 1987)

*Cryptocephalus labiatus (L.) – Kizhi Isl., Tolvuya, Shun’ga (Poppius 1899), Zaonezhye (Silfverberg 1987)

Cryptocephalus moraei (L.) – Zaonezhye (Silfverberg 1987)

*Cryptocephalus nitidulus Fabricius – Kizhi Isl. (Poppius 1899), Zaonezhye (Silfverberg 1987)

*Cryptocephalus octopunctatus (Scopoli) – Kizhi Isl. (Poppius 1899), Zaonezhye (Silfverberg 1987)

Cryptocephalus pini (L.) – Zaonezhye (Silfverberg 1987)

Cryptocephalus sericeus (L.) – Kizhi Isl. (Poppius 1899), Bol. Klim. Isl., Oyatevschina, Turastamozero, Vikshezero

*Cryptocephalus sexpunctatus (L.) – Velikaya Guba (Poppius 1899), Zaonezhye (Silfverberg 1987)

*Derocrepis rufipes (L.) – Kuzaranda (Poppius 1899)

Donacia clavipes Fabricius – Podyelniki, Oyatevschina

Donacia crassipes Fabricius – Kosmozero (Poppius 1899), Zaonezhye (Silfverberg 1987), Eglow Isl.

Donacia impressa Paykull – Zaonezhye (Silfverberg 1987)

Donacia obscura Gyllenhal – Dianova Gora (Poppius 1899), Zaonezhye (Silfverberg 1987)

Donacia thalassina Germar – Zaonezhye (Silfverberg 1987)

Donacia vulgaris Zschach – Velikaya Guba (Poppius 1899), Zaonezhye (Silfverberg 1987)

Galeruca tanaceti L. – Eglow Isl., Podyelniki, Nizhnee Myagrozero

Galerucella calmariensis L. – Kizhi Isl., Uzkaya Salma

Galerucella grisescens Joannis – Vorobyi

Galerucella lineola Fabricius – Kizhi Isl.

Galerucella nymphaeae L. – Vorobyi, Eglow Isl., Khvost Isl., Rogachev Isl., Verkhnee Myagrozero, Vorobyi

*Galerucella sagittariae (Gyllenhal) – Unitsa (Poppius 1899)

*Gastrophysa polygoni (L.) – Shun’ga (Poppius 1899)

*Goniocenta flavicornis (Suffrian) – Oleny Isl. (Poppius 1899)

*Goniocenta pallida (L.) – Bol. Klim. Isl. (Poppius 1899)

Goniocenta quinquepunctata F. – Podyelniki, Verkhnee Myagrozero

Goniocenta viminalis (L. – Kizhi Isl., Shun’ga (Poppius 1899), Bol. Klim. Isl., Turastamozero

*Hippuriphila modeeri (L.) – Kuzaranda, Unitsa (Poppius 1899)

*Hydrothassa hannoveriana (Fabricius) – Velikaya Guba (Poppius 1899)

Hydrothassa marginella L. – Podyelniki, Oyatevschina

*Lema cyanella (L.) – Shun’ga (Poppius 1899), Zaonezhye (Silfverberg 1987)

Lilioceris merdigera (L.) – Oyatevschina, Tambitsy

Lochmaea caprea L. – Rogachev Isl., Tipintotsy

*Lochmaea suturalis (Thomson) – Kizhi Isl. (Poppius 1899), Tipintotsy

*Longitarsus holsaticus (L.) – Kosmozero, Unitsa (Poppius 1899)
Longitarsus lycopi (Foudras) – Tolvuya (Poppius 1899)
Longitarsus pratensis (Panzer) (as *L. pusillus* Gyllenhal) – Shun’ga, Unitsa (Poppius 1899)
Lyttharia salicariae (Paykull) – Kizhi Isl. (Poppius 1899)
Necerepidera femorata (Gyllenhal) – Velikaya Guba (Poppius 1899), Tolvuya (Poppius 1897)
Oulema erichsonii (Suffrian) – Kosmozero (Poppius 1899), Zaonezhye (Silfverberg 1987)
Oulema galleaciana (Heyden – Shun’ga, Tolvuya (Poppius 1899), Zaonezhye (Silfverberg 1987)
Phaedon cochleariae (Fabricius) (as *Hydrothassa egena* (Gyllenhal) – Kizhi Isl., Oleny Isl. (Poppius 1899)
Phratora atroviorens Cornelius – Vikshezero
Phratora vitellinae (L.) – Zaonezhye (Poppius 1899)
Phyllobrotica quadrimaculata L. – Podyelniki
Phyllostreta nemorum (L.) – Tolvuya (Poppius 1899)
Plagiodera versicolora (Laicharting) – Kizhi Isl., Oleny Isl. (Poppius 1899)
Plagioesterna aenea (L.) – Uzkaya Salma, Tolvuya (Poppius 1899)
Plateumaris affinis (Kunze) – Rogachev Isl., Zaonezhye (Silfverberg 1987)
Plateumaris discolor – Zaonezhye (Silfverberg 1987)
Plateumaris rustica (Kunze) – Velikaya Guba (Poppius 1899)
Plateumaris sericea (L.) – Kizhi Isl., Velikaya Guba (Poppius 1899), Zaonezhye (Silfverberg 1987)
Psylliodes cucullata (Illiger) – Shun’ga, Tolvuya, Unitsa (Poppius 1899)
Psylliodes napi (Fabricius) – Shun’ga (Poppius 1899)
Pyrrhalta viburni Paykull – Tipinitsy
Smaragdina affinis (Illiger) – Zaonezhye (Silfverberg 1987)
Smaragdina flavicollis Charp. – Podyelniki
Smaragdina salicina (Scopoli) – Kosmozero (Poppius 1899)

Anthribidae

Dissoleucas niveirostris Fabricius – Turastamozero

Atellabidae

Apoderus coryi (L.) – Kizhi Isl., Kuzaranda (Poppius 1899), Uzkaya Salma
Bytiscus betulae (L.) – Kizhi (Poppius 1899)
Bytiscus populi L. – Velikaya Guba (Poppius 1899), Vikshezero
Deporaus betulae L. – Kosmozero (Poppius 1899), Khvost Isl.

Curculionidae

Amycterus marshami (Schönherr) – Shun’ga, Tolvuya (Poppius 1899)
Apion apricans Herbst – Kizhi Isl. (Poppius 1899)
Apion ervi Kirby – Unitsa (Poppius 1899)
Apion frumentarium (L.) – Kizhi Isl. (Poppius 1899)
Apion gyllenhali Kirby – Kizhi Isl., Shun’ga (Poppius 1899)
Apion opeticum Bach – Tipinitsy
Apion viciae (Paykull) – Shun’ga (Poppius 1899)
Apion violaceum Kirby – Kosmozero, Shun’ga, Tolvuya (Poppius 1899)
Apion virens Herbst – Kosmozero, Shun’ga, Tolvuya, Velikaya Guba (Poppius 1899)
Auleutes epilobi (Paykull) – Kuzaranda (Poppius 1899), Tipinitsy
Bagous lutulentus (Gyllenhal) – Velikaya Guba (Poppius 1899)
Brachysomus echinatus (Bonsdorff) – Kizhi Isl. (Poppius 1899)
Ceutorhynchus rugulosus (Herbst) – Shun’ga, Unitsa (Poppius 1899)

Ceutorhynchus typhae (Herbst – Shun’ga (Poppius 1899)

Cionus tuberculatus (Scopoli) (as *C. verbasci* Fabricius) – Kizhi Isl. (Poppius 1899)

Cryptophagus distinctus Boheman – Rogachev Isl.

Cryptophagus lapathi L. – Khvost Isl.

Dorytomus minutus (Gyllenhal) – Kizhi Isl. (Poppius 1899)

Eutrichapion facetum (Gyllenhal) (as *Apion sundevallii* Boheman) – Bol. Klim. Isl., Shun’ga, Unitsa

Grypus equiseti (Fabricius) – Shun’ga (Poppius 1899)

Hylastes angustatus (Herbst) – Kosmozero (Poppius 1899)

Hylobius pinastri Gyllenhal – Lipovitsy, Tipinitsy

Hylobius palliatus (Gyllenhal) – Kosmozero, Velikaya Guba (Poppius 1899), Bol. Klim. Isl., Uzkaya Salma, Vegoruksy

Hypera arator (L.) (as *H. polygoni* L.) – Oleny Isl., Shun’ga (Poppius 1899)

Hypera nigrirostris (Fabricius) – Kosmozero, Shun’ga, Tolvuya (Poppius 1899)

Hypera rumicis (L.) – Tolvuya (Poppius 1899), Verkhnee Myagrozero

Hypera suspiciosa (Herbst) – Kizhi Isl., Oleny Isl., Shun’ga, Unitsa (Poppius 1899)

Ips sexdentatus (Börner) – Kosmozero (Poppius 1899)

Ips typographus (L.) – Kosmozero, Velikaya Guba (Poppius 1899), Bol. Klim. Isl., Lipovitsy, Poly, Uzkaya Salma, Vegoruksy

Limnobaris dolorosa Goeze – Eglov Isl., Khvost Isl.

Limniobius borealis (Paykull) – (as *Hypera dissimilis* Herbst – Oleny Isl., Shun’ga (Poppius 1899))

Magdalis carbonarius (L.) – Kizhi Isl. (Poppius 1899)

Magdalis frontalis Gyllenhal – Velikaya Guba (Poppius 1899)

Magdalis ruficornis (L.) (as *M. pruni* L.) – Bol. Klim. Isl., Oleny Isl. (Poppius 1899)

Magdalis violacea (L.) – Kizhi Isl (Poppius 1899)

Marius campanulacae (L.) – Tolvuya (Poppius 1899)

Orthotomicus laricis (Fabricius) – Kosmozero (Poppius 1899)

Otiorynchus oovatus (L.) – Kosmozero, Shun’ga, Tolvuya (Poppius 1899), Kizhi Isl.

Otiorynchus scaber (L.) – Kizhi Isl. (Poppius 1899), Tipintysy, Vorobyi

Pelenomus comari (Herbst) – Zaonezhye (Poppius 1899)

Phloeotribus spinulosus (Rey) – Kurgenitsy

Phyllobius arborator Herbst – Kizhi Isl.

Phyllobius maculicornis Germar – Kosmozero (Poppius 1899), Kizhi Isl., Rogachev Isl.

Phyllobius pomaceus Gyllenhal – Tolvuya (Poppius 1899)

Pissodes pini L. – Eglov Isl.

Pityogenes chalcographus (L.) – Kizhi

Polydrusus cervinus (L.) – Kizhi Isl., Oleny Isl. (Poppius 1899)

Polydrusus fulvicornis (Fabricius) – Shun’ga (Poppius 1899), Eglov Isl., Podyelniki, Rogachev Isl., Turastamozero

Polydrusus micans (Fabricius) – Kizhi Isl., Velikaya Guba (Poppius 1899)

Rhinoncus castor (Fabricius) – Kizhi Isl. (Poppius 1899)

Rhynchites cupreus (L.) – Kosmozero (Poppius 1899)

Stenopterus scolytus (Fabricius) (as *S. destructor* Olivier) – Velikaya Guba (Poppius 1899)

Sitona lineatus (L.) – Kizhi Isl., Shun’ga (Poppius 1899)
Strophosoma capitatum DeGeer – Eglov Isl., Khvost Isl., Tipinitsy

Taeniapion urticarium (Herbst) (as *Apion vernale* Fabricius) – Shun’ga (Poppius 1899)

Tachyerges stigma (Germar) – Kosmozero (Poppius 1899)

Tanyneicus palliatus (Fabricius) – Kosmozero, Tolvuya (Poppius 1899)

Temnocerus nanus (Paykull) – Kizhi Isl. (Poppius 1899)

Tomicus minor (Hartig) – Bol. Klim.Isl., Kosmozero, Vegoruksy, Uzkaya Salma

Tomicus piniperda (L.) – Velikaya Guba (Poppius 1899), Kosmozero, Bol. Klim. Isl., Uzkaya Salma, Vegoruksy

Trypodendron signatum (Fabricius) – Bol. Klim.Isl., Volkostrov Isl.

Yychius quinquepunctatus (L.) – Oleny Isl. (Poppius 1899)

Xyleborus cryptographus (Ratz.) – Bol. Lelikovskiy Isl.

Kurgenitsy

LEPIDOPTERA

Hepialidae

Hepialis humuli L. – Vegoruksy.

Phymatopus hecta L. – Nizhneje Myagrozero

Pharmacis fusconebulosa Deg. – Nizhneje Myagrozero

Adelidae

Nemophora amatella Staudinger – Vikshezero

Nemophora degeerella L. – Eglov Isl., Khvost Isl.

Tineidae

Scardia boletella Fabricius – Oyatevschina

Yponomeutidae

Yponomeuta evonymellus L. – Eglov Isl., Rogachev Isl.

Argyresthia sorbiella (Treitschke) – Vegoruksy

Plutellidae

Plutella xylostella (L.) – Vegoruksy

Coleophoridae

Coleophora deauratella Lienig & Zeller – Vegoruksy

Choreutidae

Anthophila fabriciana L. – Vorobyi

Gelechiididae

Metzneria aprilella (Herr.-Schäff.) – Vegoruksy

Helcystogramma ruifescens (Haworth) – Vegoruksy

Acompsia cinerella (Clerck) – Vegoruksy

Cossidae

Cossus cossus L. – Bol. Klim. Isl., Kazhma, Kosmozero

Tortricidae

Celypha lacunana Den. & Schiff. – Eglov Isl., Khvost Isl., Rogachev Isl., Vegoruksy

Olethreutes arcuella – Eglov Isl., Khvost Isl., Rogachev Isl.

Epinotia trigonella (L.) – Vegoruksy

Thiodia citrana (Hbn.) – Vegoruksy

Eucosma cana (Haworth) – Vegoruksy

Lathronymphia strigana (F.) – Eglov Isl., Vegoruksy

Clepsis rogana – Khvost Isl., Rogachev Isl.

Phiaris umbrosana – Rogachev Isl.

Aphelia unitana Hübner – Kizhi Isl., Rogachev Isl.

Dichrorampha petiverella L. – Rogachev Isl.

Epermeniidae

Epermenia illigerella Hb. – Khvost Isl.
Pterophoridae

Hellinsia didactylites (Ström) – Vegoruksy
Hellinsia osteodactylus (Zeller) – Vegoruksy
Gillmeria pallidactyla (Haworth) – Rogachev Isl.

Pyralidae

Eurrhypara hortulata L. – Rogachev Isl.
Evergestis pallidata Hufn. – Kizhi Isl.
? Udea lutealis Hübner – Nizhnje Myagrozero
Udea hamalis Thunb. – Lipovitsy
Nymphula nitidulata Hufnagel – Podyelniki, Verkhnee Myagrozero

Crambidae

Crambus lathoniellus (Zincken) – Vegoruksy

Zygaenidae

Adscita statices L. – Kizhi Isl., Vikshezero, Rogachev Isl.
Zygaena viciae Scheven – Podyelniki

Hesperidae

Pyrgus alveus Hb. – Isl. B. Klimenetsky, Eglov Isl., Kosmozero (Kaisila 1947), Sennaya Guba, Shun’ga (Kaisila 1947)
Carterocephalus síticola Mg. – Bol. Klim. Isl., Kizhi Isl. (Kaisila 1947), Sennaya Guba, Velikaya Guba (Kaisila 1947), Volkostrov Isl., Oyatevschina
Hesperia comma L. – Shun’ga (Kaisila 1947), Vorobyi

Pieridae

Pieris rapae L. – Bol. Klim. Isl., Oyatevschina, Sennaya Guba
Pontia edusa F. – Kizhi Isl., Kurgenitsy
Anthocharis cardamines L. – Bol. Klim. Isl., Eglov Isl., Kizhi Isl., Sennaya Guba, Uzkaya Salma, Oyatevschina,
Colias palaeno L. – Sennaya Guba, Turastamozero

Papilionidae

Parnassius mnemosyne (L.) – Kizhi Isl., Sennaya Guba, Shunevskiy Isl., Velikaya Niva, Volkostrov Isl., Vorobyi
Lycaenidae

Lycaena dispers Haworth – Lelikovo (Juho Paukkunen pers. comm.)

Aricia artaxerxes F. – Bol. Klim. Isl., Sennaya Guba

Aricia nicias Meigen – Kosmozero (Kaisila 1947)

Plebeius optilete Knoch – Podyelinki, Turastamozero

Plebeius argus L. – Nizhneje Myagrozero, Sennaya Guba, Turastamozero

Polyommatus icarus Rott. – Bol. Klim. Isl., Lelikovo, Sennaya Guba

Thecla betulae (L.) – Nikonova Guba

Satyrium pruni L. – Bol. Klim. Isl., Eglov Isl., Kosmozero (Kaisila 1947), Tolvuya (Kaisila 1947), Velikaya Niva (Kaisila 1947), Uzkaya Salma

Nymphalidae

Vanessa cardui L. – Bol. Klim. Isl., Sennaya Guba

Argynnis niobe L. – Kosmozero, Tolvuya (Kaisila 1947)

Boloria titania Esper – Shun’ga, Vegoruksy (Kaisila 1947)
Boloria aquilonaris Stich. – Tolvuya (Kaisila 1947), Uzkaya Salma
Pararge aegeria L. – Bol. Klim. Isl., Boyarschina, Sennaya Guba
Oenis jutta Hübner – Kizhi Isl., Velikaya Guba (Kaisila 1947)
Hyponephele lycaon Kühn – Shun’ga (Kaisila 1947)
Erebia euryale Esper. – Lizhma (Kaisila 1947)
Erebia ligea L. – Bol. Klim. Isl., Kosmozero, Oyatevschina, Turastamozero

Geometridae
Abraxas sylvatus Scop. – Oyatevschina, Sennaya Guba, Volkostrov Isl.
Antonechloris smaragdaria F. – Rogachev Isl.
Thetidia smaragdaria (F.) – Rogachev Isl.
Cabera pusaria L. – Vegoruksy
M. alternata Den. & Schiff. – Rogachev Isl.
Plemyria rubiginata (Den. & Schiff.) – Vorobyi
Dysstroma citrata (L.) – Oyatevschina, Kizhi Isl., Lelikovo, Vegoruksy
Eulithis populata L. – Oyatevschina
Apeira syringaria L. – Kosmozero (Kaisila 1947)
Arichanna melanaria L. – Tolvuya (Kaisila 1947)
Anticlea derivata (Den. & Schiff.) – Velikaya Guba
Hydriomena furcata Thunb. – Oyatevschina.
Plentyria rubiginata Den. & Schiff. – Vorobyi
Perizona alchemillatum L. – Kizhi Isl.
Perizona didymatum L. – Oyatevschina
Perizona flavofasciata Thunb. – Khvost Isl.
Scopula floslactata Haworth – Vegoruksy
Scopula immorata L. – Khvost Isl., Vegoruksy
Scopula immutata L. – Khvost Isl.
Idaea aversata L. – Vegoruksy
Timandra grisata W. Petersen – Khvost Isl., Rogachev Isl., Vegoruksy
Angeronia prunaria (L.) – Rogachev Isl., Vegoruksy
Chiasmia clathrata L. – Eglov Isl., Khvost Isl.
Cosnorhoe ocellata L. – Khvost Isl.
Crocallis elinguaria L. – Kizhi Isl.
Chloroclysta citrata L. – Kizhi Isl.

Sphingidae
Hemaris tityus L. – Kizhi Isl. (Kaisila 1947), Vorobyi
*Hemaris fuciformis*L. – Kuzaranda (Kaisila 1947)
Deilephila elpenor (L.) – Turastamozero, Velikaya Niva, Vorobyi
*Deilephila porcellus*L. – Kizhi Isl. (Kaisila 1947)
*Smerinthus ocellatus*L. – Kizhi Isl., Kosmozero (Kaisila 1947)
Hyles gallii Rtrmbrg – Velikaya Niva, Kazhma, Nizhnee Myagrozero, Kazhma.

Lasiocampidae
Gastropacha quercifolia L. – Vegoruksy
Lasiocampa quercus L. – Shunevsky Isl.

Notodontidae
*Pterostoma palpinum*Clerck – Bol. Klim. Isl., Kizhi Isl., Velikaya Guba (Kaisila 1947)
Clostera anastomosis (L.) – Vegoruksy
Ptilodon capucina L. – Tipinitisy
Lymantriidae
Orgyia antiqua L. – Zaonezhye
Calliteara pudibunda (L.) – Turastamozero, Lambasruchey, Tambitsy

Nolidae
Nola aerugula Hübner – Vegoruksy

Arctiidae
Thumatha senex(Hb.) – Tolvuya (Kaisila 1947)
Eilema lurideolum (Zinck.) – Kizhi Isl.
Eilema lutarellum(L.) – Kosmozero (Kaisila 1947)
Eilema cereolium(Hb.) – Velikaya Niva (Kaisila 1947)
Parasemia plantaginis (L.) – Zaonezhye
Rhyparia purpurata (L.) – Eglov Isl., Isl., Kuzaranda, Paleostrov Isl., Rechnoi, Vegoruksy
Cybosia mesomella (L.) – Eglov Isl., Rogachev Isl., Vegoruksy
Coscinia cribaria(L.) – Lizhma (Kaisila 1947)
Diacrisia sannio (L.) – Eglov Isl., Rogachev Isl., Uzkaya Salma, Vegoruksy
Spilosoma luteum (Hufnagel) – Khvost Isl., Oyatevschina

Noctuidae
Hypena proboscidalis L. – Kizhi Isl., Rogachev Isl.
Euclidia glyphica L. – Eglov Isl., Oyatevschina
Plussia putnami Grote – Kizhi Isl.
Autothropa excelsa Kretschmar – Kizhi Isl., Vorobyi
*Autothropa macrogamma*Ev. – Kosmozero, Tolvuya (Kaisila 1947)
Autothropa bractea (Den. & Schiff.) – Vorobyi
Acronicta rumicis L. – Vorobyi, Turastamozero
Acronicta auricoma (Den. & Schiff.) – Podyelniki, Vorobyi
Syngrapha interrogationis L. – Kizhi Isl.
Syngrapha microgamma Hbn. – Velikaya Guba, Velikaya Niva (Kaisila 1947)
Abrostola triplasia L. – Kizhi Isl.
Oligia strigilis L. – Kizhi Isl.
Cerapteryx graminis L. – Kizhi Isl.
Mythimna impura Hbn. – Kizhi Isl.
Actinotia polyodon Cl. – Kizhi Isl.
Phylometra viridaria Clerck – Kizhi Isl. (Kaisila 1947)
Rivula sericealis Scop. – Khvost Isl., Kosmozero (Kaisila 1947), Vegoruksy, Velikaya Guba (Kaisila 1947)
*Anarta myrtilli L. – Kizhi Isl. (Kaisila 1947)
*Athetis pallustris Hbn. – Bol. Klim. Isl. (Kaisila 1947)
*Platyperigea montana (Bremer) – Shun’ga (Kaisila 1947)
*Cucullia gnaphalii Hbn. – Kosmozero (Kaisila 1947)
*Cucullia umbratica L. – Kosmozero (Kaisila 1947)
*Panemaria tenebrata Scop. – Zaonezhye (Kaisila 1947)
*Hadena bicruris Hufnagel – Kosmozero (Kaisila 1947)
*Papestra biren Goeze – Kosmozero (Kaisila 1947)
*Discestra trifolii Hufnagel – Velikaya Guba (Kaisila 1947)
*Mamestra brassicae L. – Kuzaranda (Kaisila 1947)
*Spaelotis ravae (Den. & Schiff.) – Shun’ga (Kaisila 1947)
Chersotis cuprea Den. & Schiff. – Vorobyi
Xestia baja Den. & Schiff. – Nizhneje Myagrozero
*Xestia c-nigrum L. – Kosmozero (Kaisila 1947)
*Xestia cincera Herrich-Schaeffer – Velikaya Guba (Kaisila 1947)
Xanthia icteritia Hufnagel – Turastamozero
Polymixis gemmae Treitschke – Vegoruksy
Hoplodrina blanda Den. & Schiff. – Vegoruksy
Rusina ferruginea Esper – Vegoruksy
Amphipoea crinanensis Burrows – Vegoruksy
Lasionycta imbecilla (F.) – Nizhneje Myagrozero, Tolvuya (Kaisila 1947), Vegoruksy
Helotropha leucostigma Hübner – Velikaya Niva
Catocala fraxini – Lipovitsy, Polya, Vegoruksy
Melanchra pisi (L.) – Vorobyi
Melanchra persicariae L. – Tambitsy
Staurophora celsia L. – Turastamozero, Vegoruksy
Polypogon tentacularia L. – Khvost Isl., Rogachev Isl., Vegoruksy
Protodeltote pygarga Hufnagel – Eglov Isl., Khvost Isl., Vegoruksy
Deltote uncula Clerck – Eglov Isl.
Allophyses oxyacanthae L. – Vegoruksy

HYMENOPTERA

Argidae
Arge nigripes Retz. – Kurgenitsy, Turastamozero, Eglov Isl., Rogachev Isl., Sennaya Guba
Arge pagana Pz. – Kurgenitsy, Podyelniki, Turastamozero, Nizhnee Myagrozero
Arge ustulata L. – Vorobyi, Uzkaya Salma, Turastamozero, Nizhnee Myagrozero, Eglov Isl.
Aprosthema hyalinopterum Conde – Sennaya Guba

Pamphilidae
Pamphilus hortorum Klug – Rogachev Isl.

Cimbicidae
Abia candens Konow – Velikaya Niva, Kosmozero (Kontuniemi 1965)
Abia (Zaraea) fasciata L. – Kurgenitsy
Cimbex connata Schr. – Vorobyi
Cimbex femorata L. – Vorobyi, Myagrozero, Nizhnee Myagrozero
Cimbex lutea L. – Lydskoi Isl.
Corynis obscura (F.) – Lelikovo, Sennaya Guba
*Trichiosoma aenescens Guss. – Oyatevshchina, Kizhi Isl. (Kontuniemi 1965)
Trichiosoma sylvaticum Leach – Vorobyi
Diprionidae
*Monoctenus obscuratus Htg. – Podyelniki, Kizhi Isl. (Kontuniemi 1965)
*Macrodiprion nemoralis Ens. – Velikaya Guba (Kontuniemi 1965)
*Neohiprion sertifer Geoffr. – Vorobyi
Tenthredinidae
*Dolerus elderi Kincaid – Shun’ga (Kontuniemi 1965)
*Brachythops flavens (Klug) – Kizhi Isl. (Kontuniemi 1965)
*Brachythops wuestneckii (Konow) – Kizhi Isl. (Kontuniemi 1965)
*Heterarthrus nemoratus (Fallen) – Kizhi Isl. (Kontuniemi 1965)
*Hoplomacra alpina Zett. – Kizhi Isl. (Kontuniemi 1965)
*Nematus (Pteronidea) caprae (L.) – Shun’ga (Kontuniemi 1965)
*Athalia glabricollis Thoms. – Tolvuya (Kontuniemi 1965)
Cladius pectinicornis Geoffr. – Vorobyi
*Ericamia dorpatica Konow – Velikaya Niva (Kontuniemi 1965)
Siobia ruficornis (Cameron) – Tipintisy
Fenusa pusilla Lep. – Shun’ga (Kontuniemi 1965, Viramo, 1969)
*Tenthredo rossii (Panzer) – Shun’ga, Velikaya Niva (Kontuniemi 1965)
Cephibidae
Cephus cultratus Evers. – Kizhi Isl. (Kontuniemi 1965), Eglov Isl., Khvost Isl., Rogachev Isl., Lyudskoi Isl., Sennaya Guba
Cephus fumipennis Evers. – Lelikovo, Ernitsky Isl.
Cephus nigrinus Thoms. – Eglov Isl., Rogachev Isl., Lyudskoi Isl.
Calameuta filiformis (Evers.) – Lyudskoi Isl., Sennaya Guba, Lelikovo
Xiphydriidae
Xiphydria camelus L. – Vorobyi, Kurgenitsy, Myagrozero, Oyatevshchina
Xiphydria picta Konow – Kizhi Isl.
Siricidae
Urocerus gigas L. – Oyatevshchina, Nizhnee Myagrozero
Sirex juvencus L. – Kizhi Isl.
Bethylidae
Bethylus fuscicornis (Jurine) – Eglov Isl.
Dryinidae
Lonchodryinus ruficornis-complex – Vorobyi, Velikaya Niva
Mutillidae
Chrysididae
Chrysis angustula Schenck – Oyatevshchina, Kizhi Isl., Vorobyi, Turastamozero
Chrysis impressa Schenck – Vorobyi, Turastamozero
Chrysis solida Haupt – Kurgenitsy
Chrysis ruddii Shuckard – Kizhi Isl.
Chrysura hirsuta (Gerstaecker) – Vorobyi
*Pseudomalus auratus (L.) – Tolvuya (Hellén 1919)
Formicidae
Myrmica lobicornis Nyl. – Sennaya Guba
Myrmica lonaie Finzi – Sennaya Guba
Myrmica rubra L. – Kizhi Isl., Vorobyi, Sennaya Guba
Myrmica ruginodis Nyl. – Vorobyi
Myrmica rugulosa Nyl. – Sennaya Guba
Myrmica scabrinodis Nyl. – Sennaya Guba
Lasius niger (L.) – Sennaya Guba
Formica fusca L. – Sennaya Guba
Formica rufa coll. – Sennaya Guba
Formica sanguinea Latr. – Sennaya Guba
Camponotus herculeanus L. – Vorobyi

Pompilidae
Dipogon vechti Day – Myagrozero, Nizhnee Myagrozero
Dipogon bifasiatus (Geoffr.) – Velikaya Guba (Wolf 1967), Turastamozero,
Auplopus carbonarius (Scop.) – Turastamozero, Nizhnee Myagrozero
Agenioideus cinctellus (Spin.) – Vorobyi, Podyelniki, Myagrozero, Nizhnee Myagrozero, Eglov Isl.
Arachnospila opinata (Tourn.) – Vorobyi, Myagrozero
Anoplius nigerrimus (Scop.) – Podyelniki, Myagrozero, Nizhnee Myagrozero, Lelikovo

Vespidae
Eumenes coarctatus (L.) – Shun’ga
Eumenes coronatus (Panz.) – Vorobyi, Shun’ga, Turastamozero
Eumenes pedunculatus (Panz.) – Vorobyi, Nizhnee Myagrozero
Discoelius dufouri Lep. – Kurgenitsy, Turastamozero
Ancistrocerus antilope (Panz.) – Vorobyi, Turastamozero, Nizhnee Myagrozero
Ancistrocerus claripennis Thoms. – Shun’ga (Pekkarinen & Huldén 1991), Turastamozero, Nizhnee Myagrozero
Ancistrocerus parietinus (L.) – Rogachev Isl., Shun’ga, Podyelniki
Ancistrocerus parietum (L.) – Kizhi Isl., Ladmozero, Nizhnee Myagrozero
Ancistrocerus scoticus Curtis – Turastamozero
Ancistrocerus trifasciatus Mull. – Kizhi Isl., Turastamozero, Podyelniki, Kosmozero, Eglov Isl.
Symmorphus angustatus Zett. – Turastamozero, Ladmozero, Nizhnee Myagrozero
Symmorphus allobrogus (Saussure) – Tolvuya (Pekkarinen & Huldén 1991), Kizhi Isl., Turastamozero, Vikshezero
Symmorphus bifasciatus (L.) – Vorobyi, Kurgenitsy, Kosmozero, Turastamozero, Shun’ga, Rogachev Isl.
Gymnometus laevipes (Schuck.) – Vorobyi, Lelikovo
Stenodynerus picticurus Thoms. – Nizhnee Myagrozero
Euodynerus quadrifasciatus (F.) – Vorobyi
Vespa crabro L. – Vorobyi, Podyelniki, Turastamozero, Nizhnee Myagrozero, Myagrozero
Vespa rufa L. – Kizhi Isl., Turastamozero
Vespa vulgaris L. – Kizhi Isl., Boyarschina, Sennaya Guba, Turastamozero
Dolichovespula media Retz. – Bol’shoi Lelikoskiy Isl., Eglov Isl., Polya, Uzkaya Salma, Turastamozero
Dolichovespula norwegica F. – Kizhi Isl., Vorobyi, Vikshezero, Podyelniki, Polya, Uzkaya
Salma, Turastamozero, Myagrozero
Dolichovespula saxonica F. – Myagrozero, Turastamozero, Eglov Isl., Rogachev Isl.
Dolichovespula sylvestris Scop. – Podyelniki, Turastamozero

Sphecidae
Ammophila sabulosa L. – Kurgenitsy, Vorobyi

Crabronidae
Trypoxylon attenuatum Smith – Vegoruksy, Lyudskoi Isl., Lelikovo
Trypoxylon figulus (L.) – Podyelniki
Pemphredon inornata Say – Eglov Isl.,
Pemphredon lugubris (F.) – Eglov Isl., Podyelniki
Pemphredon morio v.d.Lind. – Podyelniki, Nizhnee Myagrozero
Pemphredon wesmaeli A.Mor. – Rogachev Isl.
Minumesa dahliomi (Wesm.) – Kurgenitsy
Crabro peltarius (Schreber) – Rechnoi Isl.
Ectemnius cavifrons Thoms. – Kizhi Isl., Volkostrov Isl.
Ectemnius continuus F. – Kurgenitsy, Myagrozero, Turastamozero
Ectemnius dives Lep. et Br. – Podyelniki
Ectemnius fossorius L. – Vorobyi, Kurgenitsy, Volkostrov Isl., Bolshoi Lelikoskiy Isl., Turastamozero, Podyelniki, Zubovo, Eglov Isl., Ladmozero, Myagrozero, Nizhnee Myagrozero
Ectemnius lapidarius Panz. – Kurgenitsy
Ectemnius ruficornis Zett. – Nizhnee Myagrozero, Kurgenitsy, Turastamozero
Ectemnius spinipes (A. Mor.) – Nizhnee Myagrozero, Turastamozero
Lestica clypeata (Schreber) – Podyelniki
Crossocerus assimilis Smith – Kizhi Isl.
Crossocerus dimidiatius (F.) – Kurgenitsy
Crossocerus heydeni Koehl. – Vorobyi, Podyelniki
Crossocerus vagabundus Pz. – Eglov Isl.
Spilomena enslini Blüthgen – Podyelniki, Myagrozero
Melinus arvensis (L.) – Vorobyi
Orybelus uniglumis – Ladmozero
Nysson interruptus (F.) – Vorobyi
Nysson niger Chevrier – Nizhnee Myagrozero
Nysson spinosus – Nizhnee Myagrozero
?Passaloecus borealis Dahlbom – Nizhnee Myagrozero
?Passaloecus gracilis (Curtis) – Vorobyi
Passaloecus insignis v.d.Lind. – Vorobyi, Ernitsky Isl., Nizhnee Myagrozero
Argogorytes fargei Shuckard – Vorobyi
Argogorytes mystaceus L. – Nizhnee Myagrozero, Eglov Isl.
Gorytes quadrifasciatus (F.) – Vorobyi, Kurgenitsy, Yu. Oleny Isl., Podyelniki
Rhopalum clavipes L. – Turastamozero
Rhopalum coarctatum Scop. – Kurgenitsy, Nizhnee Myagrozero, Eglov Isl., Rogachev Isl.
Tachysphex pompiliformis (Panzer) – Volkostrov Isl.

Apidae

Hylaeus annulatus (L.) – Kizhi Isl., Rogachev Isl., Sennaya Guba
Hylaeus bisinuatus Först. – Kizhi Isl., Kurgenitsy
Hylaeus communis Nyl. – Kizhi Isl., Kurgenitsy
*Hylaeus confusus Nyl. – Sennaya Guba, Tolvuya (Söderman & Leinonen 2003)
Hylaeus gibbus Sounders – Rogachev Isl.
Hylaeus nigrirus (F.) – Vorobyi
Lasioglossum albipes (F.) – Sennaya Guba
*Lasioglossum fratellum (Perez) – Sennaya Guba (Söderman & Leinonen 2003)
Lasioglossum leucopus (Kirby) – Sennaya Guba
Halicuts rubicundus Christ – Kizhi Isl.
*Halicuts tumultorum (L.) – Sennaya Guba, Tolvuya (Söderman & Leinonen 2003)
*Nomada panzerae Lep. – Sennaya Guba (Söderman & Leinonen 2003)
*Andrena cineraria L. – Sennaya Guba (Söderman & Leinonen 2003)
Andrena intermedia Thoms. – Kosmozero
*Andrena haemorrhhoa F. – Sennaya Guba (Söderman & Leinonen 2003)
*Andrena pilipes F. – Sennaya Guba (Söderman & Leinonen 2003)
Andrena ruficrus Nyl. – Tolvuya (Söderman & Leinonen 2003)
Andrena semilaevis Perez – Tolvuya (Söderman & Leinonen 2003)
Andrena subopaca Nyl. – Sennaya Guba (Söderman & Leinonen 2003)
Andrena tarsata Nyl. – Tolvuya (Söderman & Leinonen 2003)
Dufourea dentiventris (Nyl.) – Tolvuya (Söderman & Leinonen 2003)
Melitta haemorrhoidalis F. – Tolvuya (Söderman & Leinonen 2003)
Anthophora furcata Pz. – Tolvuya (Söderman & Leinonen 2003)
Osmia nigroventris Zett. – Vorobyi
Osmia pilicornis F.Smith – Vorobyi
Megachile lagopoda L. – Nizhnee Myagrozero
Megachile lapponica Thoms. – Kuzaranda (Niemelä 1936)
Megachile versicolor F.Smith – Tolvuya (Söderman & Leinonen 2003)
Megachile willughbiella (Kirby) – Turastamozero, Shun’ga (Niemelä 1936)
Macropis fulvipes (F.) – Myagrozero
Bombus consobrinus Dahlb. – Oyatevschina
Bombus distinguendus F.Mor. – Kizhi Isl., Tolvuya (Söderman & Leinonen 2003)
Bombus hypnorum L. – Sennaya Guba, Oyatevschina, Lipovitsy, Polya
Bombus humilis Ill. – Kizhi Isl., Sennaya Guba, Rogachev Isl.
Bombus jonellus Kirby – Eglov Isl., Oyatevschina
Bombus lapidarius L. – Kizhi Isl., Vorobyi, Oyatevschina, Podyelniki, Sennaya Guba, Rogachev Isl.
Bombus pascuorum Scop. – Vorobyi, Oyatevschina, Nizhnee Myagrozero, Podyelniki, Turastamozero, Sennaya Guba, Lipovitsy, Eglov Isl.
Bombus pratense Scop. – Kizhi Isl., Oyatevschina, Podyelniki, Nizhnee Myagrozero, Turastamozero, Polya
Bombus ruderarius Muller – Kizhi Isl.
Bombus schrencki Morawitz, – Polya, Tambitsy, Turastamozero
Bombus semenovii Skorikov – Lelikovo
Bombus solstitialis Pz. – Vorobyi
Bombus soroeensis (F.) – Sennaya Guba, Tolvuya (Söderman & Leinonen 2003)
Bombus sporadicus Nyl. – Polya, Lipovitsy, Uzkaya Salma, Turastamozero
Bombus veteranus F. – Kizhi Isl., Vorobyi, Oyatevschina, Lelikovo, Sennaya Guba, Rogachev Isl.
Bombus Psithyrus campestris Pz. – Oyatevschina
Bombus Psithyrus bohemicus (Seidl.) – Sennaya Guba
Bombus Psithyrus rupestris F. – Kizhi Isl., Sennaya Guba
Bombus Psithyrus sylvestris (Lep.) – Sennaya Guba

Gasteruptiidae
Gasteruption assectator L. – Kizhi Isl.
Gasteruption jaculator L. – Kizhi Isl.

Evaniiidae
Brachygaster minuta Ol. – Lipovitsy, Bol. Lelikoskiy Isl., Nizhnee Myagrozero, Turastamozero, Uzkaya Salma

Diapriidae
Zygota nigra (Thoms.) – Velikaya Guba (Hellén 1964)

Heloridae
Helorus striolatus Cameron – Myagrozero

Proctotrupidae
Disagmus areolator Hal. – Podyelniki
Phaneroserphus calcar (Hal.) – Eglov Isl.
Proctotrupes gravidator L. – Vegoruksy
Exallonyx (Eocodrus) sp. – Oyatevschina

Sclionidae
Sparasion rufipes Ruthe – Kizhi Isl.

Aphidiidae
Pauesia unilachni (Gahan) – Turastamozero
Aphidius cingulatus (Ruthe) – Turastamozero
Aphidius urticae Haliday – Lipovitsy
Aphidius sp. – Turastamozero
Lipolexis gracilis Först. – Turastamozero
*Trioxys (Binodoxys) centaureae (Hal.) – Shun’ga (Mackauer 1968)

Braconidae
Chorebus trjapitzini Tobias – Kizhi Isl.
Rogas circumscriptus Nees – Eglov Isl.
Rogas geniculator Nees – Eglov Isl.
Rogas medianus Thoms. – Podyelniki
*Proterops nigripennis Wesm. – Tolvuya (Hellén 1958)

Ichneumonidae
Hybrizon buccatus Breb. – Vorobyi, Turastamozero, Nizhnee Myagrozero
Endromopoda arundinator (F.) – Lelikovo, Ernitsky Isl.
Endromopoda detrita (Holmgr.) – Lelikovo, Turastamozero, Eglov Isl., Rogachev Isl.
Endromopoda phragmitidis (Perkins) – Ernitsky Isl.
Endromopoda nigricoxis (Ulbricht) – Velikaya Niva
Scambus immatis (Schrank) – Myagrozero
Scambus nigricans Thoms. – Oyatevschina
Gregopimpla inquisitor (Scop.) – Rogachev Isl.
Ephialtes manifestator (L.) – Kizhi Isl.
?Dolichomitus dux Tscheck – Lipovitsy
Perithous albicinctus (Grav.) – Turastamozero
Apechtis capulifera (Kriecb.) – Turastamozero
Apechtis quadridentata Thoms. – Vorobyi, Turastamozero, Polya, Tipinitsy, Tambitsy
Pimpla arctica Zett. – Kizhi Isl., Uzkaya Salma l., Turastamozero
Pimpla contemplator (Müll.) – Velikaya Niva, Shun’ga
Pimpla insignatoria (Grav.) – Kizhi Isl., Vorobyi, Kosmozero, Oyatevschina, Sennaya Guba, Podyelniki, Turastamozero, Uzkaya Salma
Pimpla melanacrias Perkins – Kizhi Isl., Uzkaya Salma
Pimpla rufipes (Miller) – Vorobyi, Kurgenitsy, Oyatevschina, Sennaya Guba, Turastamozero, Nizhnee Myagrozero, Eglov Isl., Rogachev Isl.
Pimpla turionellae L. – Velikaya Niva, Vorobyi
Itoplectis alternans (Grav.) – Oyatevschina, Turastamozero
Acropimpla pictipes (Grav.) – Tolvuya
Iseropus stercorator F. – Kizhi Isl., Vorobyi
Zaglyptus multicolor Grav. – Vorobyi, Tipinitsy
Zaglyptus varipes (Grav.) – Vorobyi, Sennaya Guba, Podyelniki, Uzkaya Salma
?Clistopyga canadensis Prov. – Vorobyi, Turastamozero
Schizopyga flavifrons Holmgr. – Vorobyi
Schizopyga frigida Cresson – Kosmozero
Acrodactyla degener (Hal.) – Lipovitsy, Turastamozero
Acrodactyla quadrisculpta (Grav.) – Lipovitsy, Turastamozero
Polysphincta rufipes Grav. – Kurgenitsy, Yu. Oleny Isl., Sennaya Guba, Oyatevschina
Zatypota albicauda Walk. – Tambitsy
Delomerista sp. – Oyatevschina
Poemenia hectar Grav. – Podyelniki, Kazhma
Megarhyssa rixator (Shellenberg) – Kizhi Isl.
Rhysella approximata (F.) – Kizhi Isl., Myagrozero, Uzkaya Salma
Diplazon deletus (Thoms.) – Podyelniki
Diplazon laetatorius F., Yu. Oleny Isl., Nizhnee Myagrozero, Podyelniki, Khvost Isl.,
Rogachev Isl., Tipinitsy
Diplazon tetragonus Thunb. – Vorobyi
Diplazon tibitoriarius (Thunb.) – Velikaya Niva
Diplazon scutatorius Teunissen – Eglov Isl.
Homotropus megalaspis Thoms. – Eglov Isl.
Homotropus nigrurus (Grav.) – Eglov Isl.
Promethes sulcator (Grav.) – Kurgenitsy, Eglov Isl.
Syphrophilus bizonarius Grav. – Kizhi Isl., Sennaya Guba
Sussaba cognata (Holmgr.) – Lelikovo, Tolvuya
Cylloceria caligata (Grav.) – Oyatevschina
Cylloceria melanochila (Grav.) – Bol. Lelikoskiy Isl., Myagrozero, Turastamozero,
Uzkaya Salma, Polya
Rossemia longithorax Humala – Polya
Orthocentrus patulus Holmgr. – Turastamozero
Orthocentrus sanhio Holmgr. – Turastamozero
Orthocentrus spurius Grav. – Podyelniki, Volkostrov Isl., Oyatevschina, Turastamozero
Orthocentrus winneritzi Först. – Myal- Isl., Turastamozero, Podyelniki
Plectiscus impurator – Nizhnee Myagrozero, Uzkaya Salma, Turastamozero
Picrostigeus recticauda (Thoms.) – Turastamozero, Bol. Lelikoskiy Isl.
Stenomacrus celer (Holmgr.) – Bol. Klim. Isl., Polya
Nerates compressus – Turastamozero
Gnathochorisis crassulus (Thoms.) – Oyatevschina, Podyelniki, Lipovitsy, Uzkaya Salma,
Turastamozero
Gnathochorisis dentifer Thoms. – Turastamozero, Kopanets lake.
Aperiileptus albipalpus (Grav.) – Turastamozero, Nizhnee Myagrozero
Aperiileptus infuscatus Först. – Turastamozero
Aperiileptus vanus Först. – Turastamozero
Aperiileptus cf. vanus Först. – Lipovitsy
Eusterinx argutula Först. – Uzkaya Salma, Turastamozero, Tipinitsy
Eusterinx inaequalis Först. – Nizhnee Myagrozero
Eusterinx tenuicincta Först. – Vorobyi
Symplecis bicingulata Grav. – Turastamozero
Symplecis cf. clipeator Lundbeck – Vorobyi
Hemiphanes erratum Humala – Tipinitsy
Megastylus cruentator Schiodte – Podyelniki
Megastylus orbitator Schiodte – Volkostrov Isl., Podyelniki, Uzkaya Salma, Turastamozero
Megastylus pectoralis – Lipovitsy
Helicites borealis Holmgr. – Turastamozero, Vorobyi
Helicites erythrocoma Gmelin – Vorobyi
Proclitus ardentis Rossem – Myagrozero, Turastamozero
Proclitus comes Hal. – Lipovitsy, Turastamozero
Proclitus praetor Hal. – Vorobyi, Eglov Isl. Nizhnee Myagrozero, Turastamozero
Dialipsis exilis Först. – Turastamozero
Plectiscidea aquilonia Humala – Turastamozero
Plectiscidea collaris Grav. – Lipovitsy, Turastamozero, Tipinitsy
Plectiscidea communis Först. – Lipovitsy, Tipinitsy
Plectiscidea posticata Först. – Myagrozero, Turastamozero, Tipinitsy
Plectiscidea zonata (Grav.) – Velikaya Niva
Pantisarthrus lubricus Först. – Turastamozero
Pantisarthrus luridus Först. – Turastamozero
Lycorina triangulifera Holmgr. – Sennaya Guba
Coleocentrus caligatus Grav. – Eglov Isl.
Coleocentrus exareolatus Kriechb. – Lipovitsy
Coleocentrus excitator Poda – Kosmozero, Vikshezero
Arote albicinctus (Grav.) – Myagrozero
Ischnocerus rusticus Geoffr. – Kizhi Isl., Vorobyi, Podyelniki
Odontocolon dentipes Gmel. – Vorobyi
*Gelis aqilis (F.) – Velikaya Niva (Hellén 1970)
*Gelis discensed (Först.) – Velikaya Niva (Hellén 1970)
Ecthrus reluctator L. – Velikaya Niva
Theroscopus hemipterus (F.) – Turastamozero
Mesoelptus distinctus (Först.) – Eglov Isl.
Glyphicnemis profligator (F.) – Tolvuya
Pleolophus busizonus (Grav.) – Uzkaya Salma
Schenkia graminicola (Grav.) – Velikaya Niva, Velikaya Niva
Cubocephalus femoralis (Thoms.) – Velikaya Niva
Cubocephalus associator Thunb. – Tolvuya, Velikaya Niva, Oyatevshi
Megalectes monticola (Grav.) – Unitsa
Sphecophaga vesparum Curtis – Vorobyi
Acrocincus stylator Thunb. – Vorobyi
?Aptesis improba (Grav.) – Tolvuya
Ischnus migrator (F.) – Vorobyi, Velikaya Niva
Glypta caudata Thoms. – Kizhi Isl.
Glypta ceratites Grav. – Eglov Isl., Podyelniki
Glypta cylindrator (F.) – Vorobyi, Turastamozero, Podyelniki, Oyatevshi, Eglov Isl., Rogachev Isl.
Glypta extincta Ratz. – Velikaya Niva
Glypta heterocera Thoms. – Kizhi Isl.
Glypta mensurator (F.) – Turastamozero, Nizhnee Myagrozero
Lissonota nitida (Grav.) – Velikaya Niva
Lissonota punctiventris Thoms. – Velikaya Niva
Alloplasta piceator (Thunb.) – Kizhi Isl., Eglov Isl.
Cryptopimpla caligata (Grav.) – Vorobyi, Kosmozero
Cryptopimpla errabunda (Grav.) – Podyelniki, Velikaya Niva
Exetastes laevigator (Villers) – Shun’ga
Adelognathus brevicornis Holmgr. – Lydskoi Isl., Sennaya Guba
?Adelognathus dealbatus Kasp. – Nizhnee Myagrozero
Adelognathus dorsalis (Grav.) – Vorobyi, Eglov Isl., Podyelniki
Adelognathus pilosus Thoms. – Eglov Isl.
Idiogramma euryops Schmied. – Velikaya Niva
Phytodietus gelitorius Thunb. – Vorobyi, Turastamozero
Dyspetes luteomarginatus Hab. – Tipinitsy, Turastamozero
Cosmoconus ceratophorus Thoms. – Podyelniki
Cosmoconus elongator (F.) – Zubovo, Nizhnee Myagrozero
Cosmoconus hinzi Kasp. – Vorobyi, Kosmozero
Cosmoconus nigriventris Kasp. – Vorobyi, Podyelniki
Polyblastus nanus Kasp. – Kurgenitsy
Polyblastus pinguis Grav. – Vorobyi
Polyblastus subalpinus Holmgr. – Turastamozero
Polyblastus tener Haberm. – Lyudskoi Isl.
Polyblastus varitarsus (Grav.) – Eglow Isl., Polya, Tipinitsy, B.Lelikoskiy Isl., Myal Isl.
Polyblastus wahlergi Holmgr. – Turastamozero
Ctenochira gilvipes (Holmgr.) – Eglow Isl.
Ctenochira marginata Holmgr. – B.Lelikoskiy Isl., Kopanets lake
Ctenochira propinqua Grav. – Vorobyi, B.Lelikoskiy Isl., Sennaya Guba
Ctenochira xanthopyga (Holmgr.) – Eglow Isl.
Tryphon bidentatus Stephens – Vorobyi, Kurgenitsy, Lelikovo
Tryphon exclamationis Grav. – Kurgenitsy
Tryphon obtusator (Thunb.) – Vorobyi, Kurgenitsy, Lelikovo
Tryphon thomsoni Roman – Kurgenitsy
Erromenus plebejus (Woldst.) – Lelikovo
Cycasis rubiginosa Grav. – Vorobyi
Kristotomus laetus Grav. – Vorobyi
Exyston sponsorius (F.) – Vorobyi, Oyatevschina
Eridolius aurifluus (Hal.) – Kurgenitsy
Eridolius rufilabris (Holmgr.) – Oyatevschina
Ctenopelma lapponicum Holmgr. – Rogachev Isl.
Ctenopelma nigrum Holmgr. – Velikaya Niva (Hellén 1948)
Ctenopelma tomentosum Desv. – Oyatevschina
Xenoschesis ustulata (Desv.) – Podyelniki, Lipovitsy, Velikaya Niva
Pion fortipes Grav. – Vorobyi, Kizhi Isl., Rogachev Isl.
Pion nigripes Schioðte =crassipes Holmgr. – Kizhi Isl.
Scolobates auriculatus F. – Lipovitsy
Opheltes glaucopterus L. – Kurgenitsy, Vorobyi, Lipovitsy, Vegoruksy
Perillus rufoniger (Grav.) – Oyatevschina
Perillus variator (Müll.) – Vorobyi, Rogachev Isl.
*Phobetes leptocerus (Grav.) – Velikaya Niva (Hellén1961)
Hypamblys albopictus (Grav.) – Velikaya Niva
Rhaestus lativentris Holmgr. – Vorobyi
Rhaestus ophthalmicus Holmgr. – Vorobyi
Rhaestus rufipes Holmgr. – Vorobyi
?Alexeter multicolor (Grav.) – Kosmozero
Sympherta jactator (Thunb.) – Podyelniki
Sympherta obligator (Thunb.) – Vorobyi, Velikaya Niva
Mesoletius aulicus Grav. – Polya
Anisotacrus bifurcatus (Grav.) – Oyatevschina
Hadrodactylus tiphae (Geoffr.) – Tolvuya, Kizhi Isl.
Oxytorus luridator (Grav.) – Vorobyi, Turastamozero, Nizhnee Myagrozero, Myagrozero
Collyria trichophtalma Thoms. – Lelikovo, Sennaya Guba, Ernitsky Isl., Eglow Isl., Rogachev Isl.
Problæs microcephalus Grav. – Kurgenitsy
Tersilochus caudatus (Holmgr.) – Vorobyi
Barycnemis bellator (Müll.) – Vorobyi
Charops cantator (DeGeer) – Eglov Isl.
Casinaria sp. – Podyelniki
Tranosemella coxalis Brischke – Kurgenitsy
*Dusona stenogaster (Först.) – Velikaya Niva (Hellén 1962)
*Dusona stragifex (Först.) – Velikaya Niva (Hellén 1937)
?Diadegma rectificator Aubert – Kosmozero
*Enicospilus undulatus (Grav.) – Kizhi Isl. (Hellén 1926)
Cidapus areolatus Boie – Podyelniki
Therion circumflexum L. – Turastamozero
Heteropelma amictum (F.) – Tipinititsy
Aphanistes ruficornis Grav. – Vorobyi, Eglov Isl.
Camposcopus canaliculatus Ratz. – B.Lelikoskiy Isl.
Triclistus pallipes Holmgr. – Eglov Isl.
Alomya debellator F. – Kizhi Isl., Turastamozero, Kosmozero, Podyelniki, Eglov Isl., Rogachev Isl.
Alomya pygmaea Heinrich – Kurgenitsy, Vorobyi, Sennaya Guba, Radkol’e, Tolvuya (Hellén 1951), Eglov Isl., Rogachev Isl.
Misetus oculatus Wesm. – Vorobyi, Turastamozero, Uzkaya Salma, Polya
Heterischinus debilis Grav. – Podyelniki
Platylabus vibratorius Thunb. – Vorobyi
Platylabus heteromallus (Berthoumeieu) – Vikshezero
Pseudoplatylabus violentus (Grav.) – Kurgenitsy
Acolobus albimanus (Grav.) – Megostrov Isl.
Protichneumon similatorius (F.) – Kizhi Isl., Vorobyi, Oyatevschina
Apolus castaneus (Grav.) – Vorobyi
Cratichneumon jocularis (Wesm.) – Ernitsky Isl.
Cratichneumon rufifrons (Grav.) – Eglov Isl.
Cratichneumon sicarius (Grav.) – Kizhi Isl.
Cratichneumon viator (Scop.) – Kizhi Isl., Velikaya Guba, Oyatevschina, Vorobyi, Eglov Isl.
Ctenichneumon divisorius (Grav.) – Vorobyi
Ctenichneumon inspector (Wesm.) – Vorobyi
Syspasis scutellator (Grav.) – Vikshezero, Eglov Isl.
*Hoplismenus bidentatus (Gmel.) – Kizhi Isl. (Hellén 1936)
Homotherus locutor (Thunb.) – Ernitsky Isl.
Homotherus varipes (Grav.) – Vorobyi
*Hybophorellus injucundus (Wesm.) – Velikaya Niva (Hellén 1951)
Anisopygus pseudonymus (Wesm.) – Rogachev Isl.
Hepiopelmus melanogaster (Gmelin) – Vorobyi
Ichneumon ballatus Wesm. – Kurgenitsy
Ichneumon caedator Grav. – Lambaznik Isl.
Ichneumon cessor Müller – Velikaya Niva
Ichneumon gracilicornis Grav. – Vorobyi, Myal Isl.
Ichneumon oblongus Schrank – Vikshezero
Ichneumon primatorius Först. – Eglov Isl.
*Eurylabus tristis (Grav.) – Shun’ga (Hellén 1951)
Amblyjoppa proteus Christ – Vorobyi, Bol. Lelikoskiy Isl., Turastamozero
Limerodops elongatus (Brischke) – Vikshezero, Kizhi Isl.
Sycaonia foersteri (Wesm.) – Ernitsky Isl.
Virgichneumon albosignatus (Grav.) – Vorobyi
*Virgichneumon faunus (Grav.) – Kuzaranda (Ranin 1979)
Vulgidneumon deceptor (Scop.) – Ernitsky Isl.
Vulgidneumon suavis (Grav.) – Ernitsky Isl., Lelikovo

DIPTERA

Trichoceridae

Trichocera rufescens Edwards – Polya, Tambitsy, Tipintsy

Pedicidiidae

Ula bolitophila Loew – Velikaya Niva
Ula sylvatica Meigen – Polya, Tipintsy

Tricyphona unicolor Schummel – Ernitskiy Isl., Kizhi Isl., Lelikovo

Limoniidae

Elephantomyia kriovsheinae Savtshenko – Myal’ Isl.
Helius longirostris Meigen – Ernitskiy Isl., Klimenicy, Lelikovo, Polya, Sennaya Guba, Shunevskiy Isl., Uzkalaya Salma, Vikshezero

Australimnophila unica Osten-Sacken – Paleostrov Isl., Tolvuya
Idioptera linnei Oosterbroek – Kizhi Isl., Vikshezero
Idioptera pulchella Meigen – Vikshezero, Volkostrov Isl.

Limnophila pictipennis Meigen – Lelikovo

Neolimnomyia nemoralis Meigen – Lipovitsy, Lyudskoi Isl., Paleostrov Isl., Rogachev Isl., Sennaya Guba

Euphyllidorea phacostigma Schummel – Podyelniki, Polya

Phyldorea abdominalis Staeger – Verkhnee Myagrozero

Phyldorea ferruginea Meigen – Ernitskiy Isl., Vorobyi

Phyldorea fulvonervosa Schummel – Bol. Lelikovskiy Isl.

Phyldorea longicornis Schummel – Klimenicy, Lipovitsy, Shunevskiy Isl., Verkhnee Myagrozero, Vikshezero

Phyldorea squalens Zetterstedt – Lipovitsy, Verkhnee Myagrozero

Pilaria discicollis Meigen – Klimenicy, Kurgenitsy, Podyelniki

Erioptera lutea Meigen – Vegoruksy

Erioptera nielseni de Meijere – Uzkalaya Salma

Molophilus ater Meigen – Tolvuya

Molophilus bihamatus de Meijere – Klimenicy

Molophilus flavus Goetghbuer – Lipovitsy

Molophilus griseus Meigen – Kurgenitsy

Molophilus medius de Meijere – Lipovitsy

Molophilus ochraceus Meigen – Vikshezero

Ormosia depilata Edwards – Kizhi Isl., Lelikovo

Ormosia ruficuda Zetterstedt – Bol. Lelikovskiy Isl., Klimenicy, Vikshezero

Ormosia staegeriana Alexander – Klimenicy, Lipovitsy

Rhypholophus varius Meigen – Lipovitsy

Gnaphomyia viridispendens Gimmerthal – Bol. Lelikovskiy Isl., Kopanets lake, Lipovitsy

Neolimonia dumetorum Meigen – Bol. Lelikovskiy Isl., Myagrozero

Dicranomyia distendens Lundström – Eglov Isl.

Dicranomyia modesta Meigen – Klimenicy, Paleostrov Isl., Polya, Vavlok Isl.

Discobola annulata L. – Turastamozero

Discobola caesarea Osten-Sacken – Bol. Lelikovskiy Isl.

Limonia badia Walker – Polya, Tipintsy
Limonia flavipes Fabricius – Klimenicy, Shunevskiy Isl., Vorobyi
Limonia phragmitidis Schrank – Verkhnee Myagrozero
Limonia sylvicola Schummel – Lipovitsy
Limonia trivittata Schummel – Kizhi Isl., Kosmozero, Podyelniki
Metalimnobia quadrinotata L. – Turastamozero, Verkhnee Myagrozero, Vorobyi
Metalimnobia zetterstedti Tjeder – Lipovitsy
Rhipidia maculata Meigen – Klimenicy
Rhipidia uniseriata Schiner – Lyudskoi Isl.
Cylindrotomidae
Cylindrotoma distinctissima Meigen – Polya, Vorobyi
Diogma glabrata Meigen – Lipovitsy
Tipulidae
Tipula affinis Schummel – Eglov Isl., Paleoostrov Isl.
Tipula autumnalis Loew – Vorobyi
Tipula circumdata Siebke – Tambitsy
Tipula confusa Van der Wulp – Vorobyi
Tipula fascipennis Meigen – Kazhma, Vavlok Isl.
Tipula fulvipennis fulvipennis DeGeer – Klimenicy
Tipula humilis Staeger – Bol. Lelikovskiy Isl., Kizhi Isl., Kosmozero, Podyelniki
Tipula irrorata Macquart – Ernitskiy Isl., Tolvuya
Tipula lactabilis Zetterstedt – Podyelniki
Tipula limitata Schummel – Kosmozero
Tipula luna Westhoff – Eglov Isl.
Tipula nubeculosa Meigen – Oyatevschina
Tipula paludosa Meigen – Vegoruksy
Tipula pruinosa pruinosa Wiedemann – Vikshezero
Tipula pseudovariipennis Czizek – Kizhi Isl.
Tipula scripta Meigen – Bol. Lelikovskiy Isl., Lipovitsy
Tipula variicornis Schummel – Lipovitsy, Polya, Vorobyi
Tipula variipennis Meigen – Kizhi Isl., Tolvuya, Vorobyi
Prionocera turcica Fabricius – Kizhi Isl., Klimenicy
Neproctoma analis Schummel – Vikshezero
Nephrotoma cornicina L. – Kosmozero
Nephrotoma pratensis L. – Shun’ga
Dictenidia bimaculata L. – Rogachev Isl., Turastamozero, Verkhnee Myagrozero
Tanyptera atrata L. – Vorobyi
Psychopteridae
Psychoptera minuta Tonnoir – Klimenicy
Psychodidae
Clytocerus ocellaris Meigen – Vorobyi
Dixidae
Dixella aestivalis Meigen – Khvost Isl., Vikshezero
Dixella borealis Martini – Tambitsy
Dixella hyperborea Bergroth – Shunevskiy Isl.
Culicidae
Anopheles maculipennis Meigen – Kizhi Isl.
Culiseta alaskaensis Ludlow – Shunevskiy Isl.
Culiseta fumipennis Stephens – Lipovitsy, Polya, Uzkaya Salma
Culiseta ochroptera Peus – Vorobyi
Coquillettidia richardi Ficalbi – Uzkaya Salma
? Aedes annulipes Meigen – Vikshezero
Aedes bennigi Martini – Ernitskiy Isl.
Aedes cataphyla Dyar – Ernitskiy Isl., Lelikovo, Sennaya Guba
Aedes cinereus Meigen – Verkhnee Myagrozero, Vikshezero
Aedes communis DeGeer – Ernitskiy Isl.
Aedes diantaeus Howard, Dyar et Knab – Ernitskiy Isl., Lipovitsy, Shunevskiy Isl., Vikshezero
Aedes excrucians Walker – Ernitskiy Isl., Lelikovo, Shunevskiy Isl., Vikshezero
Aedes intrudens Dyar – Lyudskoi Isl
Aedes pionips Dyar – Eglov Isl., Vikshezero
Aedes punctor Kirby – Polya, Vikshezero
Culex territans Walker – Polya, Verkhnee Myagrozero

Ceratopogonidae
Clinohelea unimaculata Macquart – Klimenicy

Anisopodidae
Sylvicola cinctus Fabricius – Turastamozero
Sylvicola punctatus Fabricius – Vorobyi

Scatopsidae
Apiloscatops flavicollis Meigen – Tipinitsy

Bibionidae
Dilophus femoratus Meigen – Eglov Isl., Kuzaranda, Paleostrov Isl., Rogachev Isl., Vikshezero
Bibio clavipes Meigen – Myagrozero
Bibio pomonae Fabricius – Vorobyi

Dilomyiidae
Symmerus nobilis Lackschewitz – Kosmozero

Diadocidiidae
Diadocidia spinosula Tollet – Lyudskoi Isl., Tipinitsy

Mycetophilidae
Mycomya affinis Staeger – Tambitsy, Tipinitsy, Turastamozero
Mycomya annulata Meigen – Klimenicy, Lipovitsy, Myagrozero, Polya, Tambitsy, Tipinitsy, Turastamozero
Mycomya brunnea Dziedzicki – Tipinitsy
Mycomya cinerascens Macquart – Myal’ Isl., Tipinitsy
Mycomya collaris Edwards – Paleostrov Isl.
Mycomya egregia Dziedzicki – Lyudskoi Isl.
Mycomya festivalis Väisänen – Klimenicy
Mycomya fimbriata Meigen – Turastamozero
Mycomya flavicollis Zetterstedt – Podyelniki, Uzkaya Salma
Mycomya griseovittata Zetterstedt – Vorobyi
Mycomya nigricornis Zetterstedt – Myagrozero, Vorobyi
Mycomya paradentata Väisänen – Polya, Tambitsy, Tipinitsy, Turastamozero
Mycomya parva Dziedzicki – Lyudskoi Isl.
Mycomya penicillata Dziedzicki – Myagrozero, Turastamozero, Vorobyi
Mycomya permixta Väisänen – Lipovitsy, Myagrozero, Polya, Tambitsy, Tipinitsy, Turastamozero
Mycomya prominens Lundström – Paleostrov Isl.
Mycomya pseudoapicalis Landrock – Klimenicy
Mycomya ruficollis Zetterstedt – Klimenicy, Vikshezero
Mycomya shermani Garrett – Myagrozero, Polya, Tambitsy, Tipinitsy
Mycomya siebecki Landrock – Tambitsy, Tipinitsy
Mycomya sp4 (cf. penicillata) – Turastamozero
Mycomya trilineata Zetterstedt – Bol. Lelikovskiy Isl., Kurgenitsy, Podyelniki, Turastamozero, Verkhnee Myagrozero, Volkostrov Isl.
Mycomya trivittata Zetterstedt – Klimenicy, Lyudskoi Isl., Paleostrov Isl., Tipinitsy, Vikshezero
Mycomya winnertzi Dziedzicki – Paleostrov Isl.
Neoempheria pictipennis Haliday – Tipinitsy
Neoempheria tuomikoskii Väisänen – Vikshezero
Acnemia angusta A. Zaitzev – Kopanets lake, Vikshezero
Acnemia nitidicollis Meigen – Bol. Lelikovskiy Isl., Kopanets lake, Kosmozero, Kurgenitsy, Lyudskoi Isl., Oyatevchicha, Podyelniki, Polya, Turastamozero, Uzkaya Salma, Velikaya Niva, Vorobyi, Voynavolok
Allocotocera pulchella Curtis – Eglov Isl., Klimenicy, Oyatevchicha, Turastamozero, Uzkaya Salma
Leptomorphus subforcipatus A. Zaitzev & Ševčík – Vorobyi
Leptomorphus walkerii Curtis – Kopanets lake
Megalopelma nigraculatum Strobl – Lyudskoi Isl.
Neuratelia nemoralis Meigen – Lelikovo, Velikaya Niva
Phthinia humilis Winnertz – Turastamozero
Polylepta borealis Lundström – Kopanets lake
Sciophila fenestella Curtis – Lyudskoi Isl., Oyatevchicha, Podyelniki, Uzkaya Salma, Vikshezero, Vorobyi
Sciophila geniculata Zetterstedt – Klimenicy, Oyatevchicha
Sciophila hirta Meigen – Podyelniki
Sciophila nigrontitida Landrock – Kizhi Isl., Vorobyi
Sciophila persubtilis Polevoi – Oyatevchicha, Turastamozero
Sciophila thoracica Staeger – Eglov Isl., Ernitskiy Isl., Turastamozero, Vorobyi
Syntemna nitidula Edwards – Ernitskiy Isl.
Syntemna relicta Lundström – Vikshezero
Syntemna setigera Lundström – Lyudskoi Isl.
Syntemna stylatoideus A. Zaitzev – Lyudskoi Isl., Vorobyi
Apolephthisa subincana Curtis – Lyudskoi Isl., Podyelniki, Turastamozero, Velikaya Niva
Boletina cincticornis Walker – Kizhi Isl., Oyatevchicha, Velikaya Niva, Vorobyi
Boletina dissipata Plassmann – Klimenicy
Boletina edwardsi Chandler – Turastamozero
Boletina gripha Dziedzicki – Klimenicy, Lyudskoi Isl., Oyatevschina, Tipinitsy, Tolvuya, Turastamozero, Velikaya Niva, Verkhnee Myagrozero, Vikshezero, Volkostrov Isl., Vorobyi

Boletina griphoides Edwards – Oyatevschina, Turastamozero

? Boletina gisakovae A. Zaitzev – Tambitsy, Tipinitsy, Turastamozero

Boletina kivachiana Polevoi & Hedmark – Turastamozero

Boletina lundstroemi Landrock – Turastamozero

Boletina moravica Landrock – Turastamozero, Verkhnee Myagrozero

Boletina nigricans Dziedzicki – Kizhi Isl., Klimenicy, Oyatevschina

Boletina nigrofusca Dziedzicki – Klimenicy

Boletina nitida Grzegorzek – Kainos Isl., Turastamozero

Boletina pinusia Maximova – Ernitskiy Isl.

Boletina populina Polevoi – Klimenicy, Oyatevschina, Turastamozero, Velikaya Niva, Vorobyi

Boletina sciarina Staeger – Kizhi Isl., Turastamozero

Boletina silvatica Dziedzicki – Turastamozero

Boletina subtriangularis Polevoi & Hedmark – Turastamozero

Boletina takaggii Sasakawa et Kimura – Turastamozero

Boletina triangularis Polevoi – Oyatevschina

Boletina trivittata Meigen – Klimenicy, Lipovitsy, Myagrozero, Polya, Tambitsy, Tipinitsy

Boletina villosa Landrock – Tambitsy

Coelosia tenella Zetterstedt – Bol. Lelikovskiy Isl., Turastamozero

Coelosia truncata Lundström – Vorobyi

Dziedzickia marginata Dziedzicki – Myagrozero

Gnoriste apicalis Meigen – Kizhi Isl.

Gnoriste bimaculata Zetterstedt – Klimenicy

Grzegorzekia collaris Meigen – Oyatevschina

Palaeodocosia vittata Coquillett – Bol. Lelikovskiy Isl., Lipovitsy, Tipinitsy

Saigusaia flaviventris Strobl – Kopanets lake, Lipovitsy

Synapha fasciata Meigen – Eglov Isl., Ernitskiy Isl., Khvost Isl.

Synapha citripennis Meigen – Kainos Isl., Lipovitsy

Docosia eliptipes Walker – Lyudskoi Isl.

Ectrepesthoneura colyeri Chandler – Myagrozero, Uzkaya Salma, Vikshezero, Vorobyi

Ectrepesthoneura hirta Winnertz – Eglov Isl., Kizhi Isl., Lyudskoi Isl., Oyatevschina, Podyelniki, Vikshezero, Vorobyi

Ectrepesthoneura ovata Ostroverkhova – Uzkaya Salma

Ectrepesthoneura pubescens Zetterstedt – Oyatevschina, Velikaya Niva, Vikshezero, Vorobyi

Ectrepesthoneura reberta Plassmann – Velikaya Niva

Leia bilineata Winnertz – Volkostrov Isl.

Leia cylindrica Winnertz – Vorobyi

Leia picta Meigen – Polya

Leia subfasciata Meigen – Ernitskiy Isl., Lipovitsy, Lyudskoi Isl., Oyatevschina, Vikshezero

Leia winthemi Lehmann – Uzkaya Salma, Volkostrov Isl.

Rondaniella dimidiata Meigen – Turastamozero

Tetragonura sylvatica Curtis – Eglov Isl.

Dynatosoma fuscicornis Meigen – Kopanets lake, Podyelniki, Turastamozero

Dynatosoma nigromaculatum Lundström – Turastamozero

Dynatosoma reciprocum Walker – Vikshezero

Dynatosoma thoracicum (s. Zaitzev) – Paleostrov Isl., Uzkaya Salma

Epicypta aterrima Zetterstedt – Ernitskiy Isl., Verkhnee Myagrozero

Mycetophila abiecta Laštovka – Bol. Lelikovskiy Isl., Vikshezero
Mycetophila alea Laffoon – Tambitsy, Tipinitsy, Turastamozero, Vorobyi
Mycetophila blanda Winnertz – Myagrozero, Tipinitsy, Vorobyi
Mycetophila brevitarsata Laštovka – Uzkaya Salma
Mycetophila confluentes Dziedzicki – Turastamozero, Vorobyi
Mycetophila curviseta Lundström – Uzkaya Salma
Mycetophila deflexa Chandler – Lipovitsy, Turastamozero
Mycetophila estonica Kurina – Tipinitsy
Mycetophila gemerensis Ševčík & Kurina – Vorobyi
Mycetophila hetschkoi Landrock – Lipovitsy, Turastamozero
Mycetophila ichneumonae Say – Bol. Lelikovskiy Isl., Klimenicy, Kosmozero, Lipovitsy, Paleostrov Isl., Podyelniki, Tambitsy, Tipinitsy, Turastamozero, Verkhnee Myagrozero, Volkostrov Isl., Vorobyi
Mycetophila laeta Walker – Tipinitsy
Mycetophila lubomirskii Dziedzicki – Tambitsy
Mycetophila magnicuda Strobl – Turastamozero
Mycetophila morosa Winnertz – Turastamozero
Mycetophila nigrofusca Dziedzicki – Kopanets lake, Turastamozero
Mycetophila ocellus Walker – Klimenicy, Turastamozero, Verkhnee Myagrozero
Mycetophila perpallida Chandler – Myagrozero, Paleostrov Isl., Polya, Tipinitsy, Turastamozero
Mycetophila schnablil Dziedzicki – Lipovitsy, Polya, Tipinitsy
Mycetophila signata Meigen – Lipovitsy
Mycetophila signatoides Dziedzicki – Lyudskoi Isl., Myagrozero, Polya, Tambitsy, Tipinitsy
Mycetophila sordida Van der Wulp – Tambitsy
Mycetophila stolida Walker – Lyudskoi Isl.
Mycetophila stricklandi Laffoon – Bol. Lelikovskiy Isl., Turastamozero
Mycetophila strigata Staeger – Vorobyi
Mycetophila strigatoides Landrock – Nizhneje Myagrozero, Turastamozero, Vikshezero
Mycetophila strobli Laštovka – Klimenicy, Kosmozero, Lyudskoi Isl., Tipinitsy, Turastamozero, Vikshezero
Mycetophila stylata Dziedzicki – Bol. Lelikovskiy Isl.
Mycetophila sublunata A. Zaitzev – Klimenicy, Paleostrov Isl., Tipinitsy, Verkhnee Myagrozero
Mycetophila subsigillata A. Zaitzev – Bol. Lelikovskiy Isl., Paleostrov Isl., Tambitsy, Tipinitsy, Turastamozero
Mycetophila triangulata Dziedzicki – Vorobyi
Mycetophila trinotata Staeger – Kurgenitsy, Turastamozero, Vorobyi
Mycetophila uschatica Subbotina & Maksimova – Polya
Phronia braueri Dziedzicki – Turastamozero, Volkostrov Isl.
Phronia caliginosa Dziedzicki – Polya, Tambitsy
Phronia cinerascens Winnertz – Turastamozero, Vikshezero
Phronia disgrega Dziedzicki – Lyudskoi Isl., Myagrozero, Vikshezero
Phronia egregia Dziedzicki – Tipinitsy, Turastamozero
Phronia exigua Zetterstedt – Turastamozero
Phronia flavipes Winnertz – Tambitsy

Phronia forcipula Winnertz – Klimenicy

Phronia gagnei Chandler – Bol. Lelikovskiy Isl., Klimenicy

Phronia maculata Dziedzicki – Lipovitsy, Tipinitisy, Uzkaya Salma

Phronia nigricornis Zetterstedt – Uzkaya Salma

Phronia nigripalpis Lundström – Kizhi Isl., Kopanets lake, Vikshezero, Volkostrov Isl., Vorobyi

Phronia nitidiventris Van der Wulp – Tambitsy, Turastamozero

Phronia notata Dziedzicki – Turastamozero

Phronia persimilis Hackman – Khvost Isl., Turastamozero, Vikshezero

Phronia siebeckii Dziedzicki – Uzkaya Salma

Phronia signata Winnertz – Tambitsy

Phronia strenua Winnertz – Bol. Lelikovskiy Isl., Klimenicy, Lelikovo, Shunevskiy Isl., Turastamozero, Volkostrov Isl., Vorobyi

Phronia taczanowskii Dziedzicki – Turastamozero

Phronia vitrea Plassmann – Polya

Phronia willistoni Dziedzicki – Bol. Lelikovskiy Isl.

Platurocypta punctum Stannius – Bol. Lelikovskiy Isl., Klimenicy, Lyudskoi Isl., Turastamozero, Vorobyi

Sceptonia concolor Winnertz – Lipovitsy

Sceptonia costata Van der Wulp – Myagrozero, Turastamozero

Sceptonia demejerei Bechev – Vorobyi

Sceptonia flavipuncta Edwards – Ernitskiy Isl.

Sceptonia fumipes Edwards – Turastamozero, Vorobyi

Sceptonia fusicipalpis Edwards – Tambitsy, Turastamozero, Vikshezero

Sceptonia hamata Ševčík – Bol. Lelikovskiy Isl., Turastamozero

Sceptonia longisetosa Ševčík – Oyatevschina

Sceptonia membranacea Edwards – Klimenicy, Polya

Sceptonia pilosa Bukowski – Bol. Lelikovskiy Isl., Kuivakhda Isl., Lyudskoi Isl., Turastamozero

Sceptonia regni Chandler – Turastamozero

Trichonta atricauda Zetterstedt – Vikshezero

Trichonta concinna Gagné – Tambitsy

Trichonta conjungens Lundström – Tipinitisy

Trichonta excisa Lundström – Volkostrov Isl.

Trichonta hamata Mik – Yu. Oleny Isl.

Trichonta subfusca Lundström – Turastamozero

Trichonta vulcani Dziedzicki – Lipovitsy

Trichonta vulgaris Loew – Turastamozero

Zygomyia angusta Plassmann – Lyudskoi Isl.

Zygomyia kiddi Chandler – Oyatevschina

Zygomyia notata Stannius – Oyatevschina, Paleostrov Isl., Vorobyi

Zygomyia pseudoluminalis Caspers – Bol. Lelikovskiy Isl., Oyatevschina, Podyelniki, Shunevskiy Isl., Tipinitisy, Turastamozero, Uzkaya Salma, Volkostrov Isl., Vorobyi

Zygomyia semifusca Meigen – Turastamozero

Zygomyia valida Winnertz – Kurgenitsy, Turastamozero, Vorobyi
Zygomyia zaitzevi Chandler – Bol. Lelikovskiy Isl., Klimenicy, Vorobyi
Allodia alternans Zetterstedt – Klimenicy, Turastamozero
Allodia anglofennica Edwards – Kizhi Isl., Lipovitsy, Polyà, Tambitsy, Verkhnee Myagrozero
Allodia czernyi Landrock – Tambitsy
Allodia foliifera Strobl – Turastamozero
Allodia lugens Wiedemann – Myal’ Isl., Tipinitsy
Allodia ornaticollis Meigen – Kurgenitsy
Allodia puxidiiformis A. Zaitzev – Turastamozero
Allodiopsis domestica Meigen – Klimenicy, Tambitsy
Allodiopsis gracai Ševčík & Papp – Klimenicy
Allodiopsis rustica Edwards – Polyà, Tipinitsy, Verkhnee Myagrozero
Notolopha cristata Staeger – Klimenicy, Lipovitsy, Tambitsy, Tipinitsy, Verkhnee Myagrozero
Myrosia maculosa Meigen – Tipinitsy
Symplasta karelica A. Zaitzev – Turastamozero
Symplasta pseudoingeniosa A. Zaitzev – Tambitsy
Symplasta sintensis Lackschewitz – Myal’ Isl.
Anatella flavonaculata Edwards – Volkostrov Isl.
Brachypeza armata Winnertz – Kopanets lake
Brachypeza bisignata Winnertz – Lyudskoi Isl., Nizhneje Myagrozero
Brevicornu bellum Johansen – Turastamozero
Brevicornu fasciculatum Lackschewitz – Kizhi Isl., Lyudskoi Isl., Turastamozero, Volkostrov Isl.
Brevicornu fusciipenne Staeger – Klimenicy, Turastamozero, Vorobyi
Brevicornu griseicolle Staeger – Kosmozero, Turastamozero, Volkostrov Isl., Vorobyi
Brevicornu grisolum Zetterstedt – Bol. Lelikovskiy Isl.
Brevicornu improvisum A. Zaitzev – Turastamozero
Brevicornu nigrofuscum Lundström – Turastamozero
Brevicornu parafennicum A. Zaitzev – Turastamozero, Vorobyi
Brevicornu serenum Winnertz – Bol. Lelikovskiy Isl., Kopanets lake, Turastamozero
Brevicornu sericoma Meigen – Bol. Lelikovskiy Isl., Kizhi Isl., Vavlok Isl.
Cordyla brevicornis Staeger – Klimenicy, Paleostrov Isl., Polyà, Turastamozero, Vorobyi
Cordyla crassicorns Meigen – Lipovitsy, Polyà, Tambitsy, Tipinitsy, Turastamozero
Cordyla fasciata Meigen – Turastamozero
Cordyla fissa Edwards – Vorobyi
Cordyla flaviceps Staeger – Myagrozero, Turastamozero, Uzkaya Salma, Vorobyi
Cordyla insons Laštovka et Matile – Lipovitsy, Turastamozero, Vorobyi
Cordyla nitens (s. Zaitzev) Winnertz – Tipinitsy, Turastamozero
Cordyla ntitidula Edwards – Oyatevchina
Cordyla parvipalpis Edwards – Turastamozero, Uzkaya Salma
Cordyla pseudomurina (in prep.) – Lipovitsy
Cordyla pusilla Edwards – Kizhi Isl., Lyudskoi Isl., Polyà, Tambitsy, Turastamozero, Vorobyi
Cordyla semiflava Staeger – Turastamozero
Exechia cincta Winnertz – Tipinitsy
Exechia contaminata Winnertz – Klimenicy, Paleostrov Isl., Polyà, Tambitsy, Tipinitsy
Exechia dizona Edwards – Tambitsy, Tipinitsy
Exechia dorsalis Staeger – Myagrozero, Polyà, Tambitsy, Turastamozero, Velikaya Niva
Exechia exigua Lundström – Paleostrov Isl., Tipinitsy, Turastamozero
? Exechia macula Chandler – Kurgenitsy
Exechia nigroscutellata Landrock – Klimenicy, Paleostrov Isl.
Exechia parva Lundström – Tambitsy, Turastamozero, Verkhnee Myagrozero
Exechia paroula Zetterstedt – Polya, Tipintsy
Exechia pectinivalva Stackelberg – Vorobyi
Exechia pseudocincta Strobl – Klimenicy, Tambitsy
Exechia repanda Johansen – Turastamozero, Volkostrov Isl.
Exechia separata Lundström – Polya, Tipintsy
Exechia seriata Meigen – Klimenicy
Exechia spinuligera Lundström – Vorobyi
Exechia subfragida Laštovka & Matile – Polya
Exechia unifasciata Lackschewitz – Polya
Exechiopsis aemula Plassmann – Turastamozero
Exechiopsis cruciata Lundström – Yu. Oleny Isl.
Exechiopsis davatchii Matile – Turastamozero
Exechiopsis lackschewitziana Stackelberg – Lipovitsy, Tambitsy
Exechiopsis praedita Plassmann – Oyatevshchina
Exechiopsis subulata Winnertz – Verkhnee Myagrozero
Pseudobrachypeza helvetica Walker – Polya, Tambitsy, Tipintsy
Pseudorymosia fovea Dziedzicki – Turastamozero
Rymosia fasciata Meigen – Turastamozero
Rymosia setiger Dziedzicki – Tipintsy
Rymosia signatipes Van der Wulp – Kurgenitsy, Lipovitsy
Tarnania fenestralis Meigen – Klimenicy
Tarnania tarnanii Dziedzicki – Klimenicy, Lipovitsy, Polya, Tambitsy, Tipintsy, Turastamozero

Bolitophilidae

Bolitophila dubia Siebke – Velikaya Niva
Bolitophila modesta Lackschewitz – Lipovitsy, Tambitsy, Velikaya Niva
Bolitophila nigrolineata Landrock – Polya, Tambitsy, Volkostrov Isl.
Bolitophila occlusa Edwards – Klimenicy, Polya
Bolitophila saundersi Curtis – Velikaya Niva

Keroplatusidae

Macroceria angulata Meigen – Ernitskiy Isl., Klimenicy, Kuivakhda Isl., Lelikovo, Myal’ Isl.
Macroceria centralis Meigen – Klimenicy, Tipintsy
Macroceria fasciata Meigen – Podyelniki
Macroceria fascipennis Staeger – Rogachev Isl.
Macroceria lutea Meigen – Tipintsy, Yu. Oleny Isl.
Macroceria maculata Meigen – Vikshezero
Macroceria parva Lundström – Klimenicy
Macroceria phalerata Meigen – Vavlok Isl., Vikshezero
Macroceria pilosa Landrock – Velikaya Niva
Macroceria stigma Curtis – Klimenicy, Shunevskiy Isl., Vavlok Isl.
Macroceria stigmoides Edwards – Podyelniki, Polya
Macroceria vittata Meigen – Turastamozero
Rocetelion humerale Zetterstedt – Klimenicy
Isoneuromyia semirufa Meigen – Podyelniki
Keroplatus tipuloides Bosc – Oyatevshchina
Macrorrhyncha flava Winnertz – Podyelniki, Volkostrov Isl., Vorobyi
Neoplatyura flavia Macquart – Bol. Lelikovskiy Isl., Kopanets lake, Podyelniki, Uzka
Salma
Orfelia bicolor Macquart – Podyelniki, Turastamozero, Vorobyi
Orfelia falcata A. Zaitzev – Lyudskoi Isl.
Orfelia fasciata Meigen – Paleostrov Isl., Vavlok Isl.
Orfelia ochracea Meigen – Lipovitsy
Urytalpa dorsalis Staeger – Ernitskiy Isl.

Bombyliidae

Anthrax anthrax Schrank – Kizhi Isl., Oyatevschina

Villa paniscus Rossi – Kurgenitsy, Podyelniki, Vorobyi

Asilidae

Diocria hyalipennis Fabricius – Eglov Isl., Verkhnee Myagrozero
Cyrtopogon lateralis Fallén – Uzkaya Salma
Leptogaster cylindrica DeGeer – Vegoruksy
*Laphria flav a L. – Klimenicy, Nizhneje Myagrozero
*Choerades gilva L. – Kazhma
Choerades tenebraus Esipenko – Verkhnee Myagrozero
Neoitamus socius Loew – Oyatevschina, Podyelniki, Uzkaya Salma
Machimus atricapilus Fallén – Kurgenitsy, Podyelniki, Vorobyi

Scenopinidae

Scenopinus vitripennis Meigen – Kizhi Isl.

Therevidae

? Thereva inornata Verrall – Lipovitsy, Shun’ga
Thereva microcephala Loew – Uzkaya Salma

Rhagionidae

Rhagio annulatus DeGeer – Kainos Isl.
Chrysopilus nubecula Fallén – Klimenicy, Kosmozero, Kurgenitsy, Oyatevschina, Vorobyi

Symphoromyia crassicornis Panzer – Kuzaranda

Stratiomyidae

Microchrysa polita L. – Kizhi Isl.
Sargus rufipes Wahlberg – Oyatevschina, Polya
Stratiomys chamaeleon L. – Velikaya Niva
Stratiomys singulariaris Harris – Shun’ga
Odontomyia hydroleon L. – Tolvuya
Odontomyia tigrina Fabricius – Sennaya Guba
Oplodontha viridula Fabricius – Velikaya Guba
Neopachygaster meromelas Dufour – Kopanets lake, Oyatevschina

Xylomyidae

Xylomya czekanovskii Pleske – Khvost Isl., Klimenicy, Kopanets lake, Podyelniki, Polya, Tambitsy, Tipinitsy

Tabanidae

Chrysops caecutiens L. – Polya, Uzkaya Salma
Chrysops divaricatus Loew – Lipovitsy, Podyelniki, Polya, Turastamozero, Uzkaya Salma, Vikshezero
Chrysops nigripes Zetterstedt – Lipovitsy, Polya, Uzkaya Salma
Chrysops relictus Meigen – Oyatevschina, Podyelniki, Sennaya Guba, Turastamozero
Chrysops sepulcralis Fabricius – Vegoruksy
Chrysops sp1 – Oyatevshchina
Chrysops viduatus Fabricius – Lipovitsy, Podyelniki, Polya, Turastamozero, Uzkaya Salma
Hybomitra arpadi Szilády – Lipovitsy, Polya, Uzkaya Salma
Hybomitra bimaculata Macquart – Lipovitsy, Polya, Turastamozero, Uzkaya Salma
Hybomitra borealis Fabricius – Lipovitsy, Polya, Uzkaya Salma
Hybomitra confiformis Chvála et Moucha – Lelikovo
Hybomitra distinguenda Verrall – Lipovitsy, Polya, Uzkaya Salma
Hybomitra kaurii Chvála et Lyneborg – Uzkaya Salma
Hybomitra lundbecki – Lipovitsy, Polya, Uzkaya Salma
Hybomitra montana Meigen – Uzkaya Salma
Hybomitra muehlfeldi Brauer – Lipovitsy, Oyatevshchina, Podyelniki, Polya, Turastamozero, Uzkaya Salma
Hybomitra nigricornis Zetterstedt – Turastamozero, Volkostrov Isl.
? Tabanus bromius L. – Turastamozero
Tabanus glaucopus Meigen – Vorobyi
Tabanus maculicornis Zetterstedt – Lipovitsy, Polya, Uzkaya Salma
Atylotus fulvus Meigen – Kopanets lake, Podyelniki, Uzkaya Salma
Heptatoma pellucens Fabricius – Oyatevshchina, Uzkaya Salma
Haematopota pluvialis L. – Oyatevshchina, Podyelniki, Polya, Turastamozero
Xylophagidae
Xylophagus ater Meigen – Kizhi Isl., Vorobyi
Xylophagus cinctus DeGeer – Velikaya Niva
Brachystomatidae
Gloma fuscipennis Meigen – Lipovitsy
Heleodromia immaculata Haliday – Lipovitsy
Dolichopodidae
Dolichopus claviger Stannius – Khvost Isl., Kopanets lake, Nizhneje Myagrozero, Podyelniki
Dolichopus discifer Stannius – Bol. Lelikovskiy Isl., Eglov Isl., Klimenicy, Kopanets lake, Kurgenitsy, Lelikovo, Lipovitsy, Myagrozero, Oyatevshchina, Podyelniki, Polya, Uzkaya Salma, Vegoruksy, Verkhnjej Myagrozero, Vorobyi
Dolichopus lepidus Staeger – Ernitskiy Isl., Lelikovo, Lyudskoi Isl., Nizhneje Myagrozero, Podyelniki
Dolichopus nigripes Fallén – Ernitskiy Isl.
Dolichopus nitidus Fallén – Ernitskiy Isl., Kizhi Isl., Klimenicy, Sennaya Guba, Vegoruksy
Dolichopus notatus Staeger – Kizhi Isl.
Dolichopus pennis Meigen – Oyatevshchina, Vorobyi
Dolichopus picipes Meigen – Bol. Lelikovskiy Isl., Klimenicy, Kopanets lake
Dolichopus popularis Wiedemann – Eglov Isl.
Dolichopus simplex Meigen – Bol. Lelikovskiy Isl., Kizhi Isl., Klimenicy
Dolichopus trivialis Haliday – Kosmozero, Vorobyi
Dolichopus angustatus L. – Eglov Isl., Kizhi Isl., Podyelniki, Vorobyi
Dolichopus wahlbergi Zetterstedt – Oyatevshchina
Dolichopus settterstedti Stenhammar – Eglov Isl., Kurgenitsy, Vegoruksy
Hercostomus aerosus Fallén – Bol. Lelikovskiy Isl., Eglov Isl., Ernitskiy Isl., Khvost Isl., Klimenicy, Lelikovo, Lipovitsy, Shunievskiy Isl., Vikshezero
Hercostomus angustifrons Staeger – Ernitskiy Isl., Lelikovo, Lyudskoi Isl.
Hercostomus celer Meigen – Vikshezero
Hercostomus chalybeus Wiedemann – Eglov Isl., Kizhi Isl., Kurgenitsy, Podyelniki
Hercostomus metallicus Stannius – Eglov Isl., Khvost Isl., Klimenicy, Lyudskoi Isl., Poly, Sennaya Guba, Shunevskiy Isl., Vikshezero
Hercostomus nigrilamellatus Macquart – Shunevskiy Isl.
Hercostomus sahlbergi Zetterstedt – Turastamozero
Hydrophorus praecox Lehmann – Kuzaranda
Dolichophorus kerteszi Lichtwardt – Lelikovo, Lyudskoi Isl.
Rhaphtium crassipes Meigen – Oyatevschina, Vorobyi
Rhaphtium elegantulum Meigen – Kopanets lake
Rhaphtium lanceolatum Loew – Kizhi Isl.
? Rhaphtium riparium Meigen – Vorobyi
Syntormon bicolorellum Zetterstedt – Vorobyi
Syntormon tarsatus Fallén – Kurgenitsy
Neurigona abdominalis Fallén – Eglov Isl., Kizhi Isl.
Neurigona pallida Fallén – Bol. Lelikovskiy Isl., Kains Isl., Kopanets lake, Kosmozero, Kurgenitsy, Lipovitsy, Myagrozero, Podyelniki, Polya
Chrysotus ciliipes Meigen – Nizhneje Myagrozero
Chrysotus neglectus Wiedemann – Vorobyi
Campsicnemus curvipes Fallén – Bol. Lelikovskiy Isl.
Campsicnemus scambus Fallén – Bol. Lelikovskiy Isl., Lelikovo, Lipovitsy, Myagrozero, Podyelniki, Polya, Sennaya Guba, Shunevskiy Isl., Tambitsy, Tipinites, Vorobyi

Empididae
Rhamphomyia anomalina Zetterstedt – Vorobyi
Rhamphomyia galacoptera Strobl – Kizhi Isl.
Rhamphomyia lividiventris Zetterstedt – Uzkaya Salma
Rhamphomyia nigripes Strobl – Vikshezero
Rhamphomyia obscuripennis Meigen – Ernitskiy Isl., Kuivakhda Isl., Sennaya Guba
Rhamphomyia sp2 (cf. hybotina) – Paleostrov Isl.
Rhamphomyia spinetes Fallén – Tambitsy
Rhamphomyia stignosa Macquart – Vikshezero
Rhamphomyia sulcatina Collin – Oyatevschina
? Rhamphomyia tipularia Fallén – Kopanets lake
Rhamphomyia trigemina Oldenberg – Kizhi Isl.
Rhamphomyia umbripennis Meigen – Ernitskiy Isl., Kizhi Isl., Lyudskoi Isl., Oyatevschina, Vorobyi
Empis bicuspidata Collin – Lelikovo
Empis borealis L. – Kizhi Isl., Klimenicy
Empis livida L. – Vorobyi
Empis prodromus Loew – Lelikovo
Empis stercorea L. – Eglov Isl.
Hilara sp1 (cf. canescens) – Vegoruksy
Chelipoda inexpectata Tuomikoski – Lipovitsy
Chelipoda vocatoria Fallén – Lipovitsy
Phyllodromia melanocephala Fabricius – Bol. Lelikovskiy Isl., Khvost Isl., Kopanets lake, Podyelniki

Hemerodromia raptoria Meigen – Kurgenitsy, Vorobyi

Hybotidae

Hybos femoratus Müller – Eglov Isl., Ernitskiy Isl., Klimenicy, Lipovitsy, Polya

Trichinomyia flavipes Meigen – Lipovitsy, Myagrozero, Tambitsy, Turastamozero, Uzkaya Salma, Vorobyi

Trichina bilobata Collin – Lipovitsy

Trichina clavipes Meigen – Kosmozero

Bicellaria intermedia Lundbeck – Bol. Lelikovskiy Isl., Kurgenitsy

Bicellaria nigra Meigen – Kuivakhda Isl., Verkhnee Myagrozero

Oedalea holmgreni Zetterstedt – Vikshezero

Oedalea stigmata Meigen – Lyudskoi Isl.

Oedalea setterstedti Collin – Lipovitsy

Euthyneura myrtilli Macquart – Lipovitsy, Velikaya Niva

Ocydromia glabricula Fallén – Paleoostrov Isl., Podyelniki, Tambitsy, Tipintsy, Velikaya Niva

Leptopeza borealis Zetterstedt – Kurgenitsy, Oyatevschina

Leptopeza flavipes Meigen – Eglov Isl., Klimenicy, Kuivakhda Isl., Podyelniki, Vorobyi

? Platypalpus calceatus Meigen – Vorobyi

Platypalpus candidans Fallén – Eglov Isl., Khvost Isl.

Platypalpus ciliaris Fallén – Khvost Isl., Klimenicy, Kopanets lake, Polya, Tambitsy, Uzkaya Salma, Vorobyi

Platypalpus cursitans Fabricius – Kizhi Isl., Lyudskoi Isl., Oyatevschina, Sennaya Guba, Tolvuya, Vorobyi

Platypalpus exilis Meigen – Eglov Isl., Klimenicy, Paleoostrov Isl., Vavlok Isl.

Platypalpus longicornis Meigen – Turastamozero, Vorobyi

? Platypalpus longicornoides Chvála – Sennaya Guba

Platypalpus luteus Meigen – Kainos Isl., Lipovitsy, Podyelniki, Polya, Vorobyi

Platypalpus macula Zetterstedt – Lipovitsy, Vavlok Isl.

Platypalpus major Zetterstedt – Kopanets lake, Tipintsy

Platypalpus nigrirarsis Fallén – Myagrozero

Platypalpus nonstriatus Strobl – Klimenicy

Platypalpus pectoralis Fallén – Bol. Lelikovskiy Isl., Podyelniki, Polya, Tipintsy, Turastamozero, Uzkaya Salma, Verkhnee Myagrozero

Platypalpus pseudorapidus Kovalev – Kizhi Isl., Oyatevschina, Vorobyi

Platypalpus scandinavicus Chvála – Oyatevschina

Platypalpus stigmata Meigen – Klimenicy, Tambitsy

? Platypalpus tuonikoskii Chvála – Turastamozero

Tachypeza fennica Tuomikoski – Vikshezero, Vorobyi

Tachypeza fuscipennis Fallén – Vorobyi

Tachypeza heeri Zetterstedt – Lipovitsy, Oyatevschina, Polya, Volkostrov Isl.

Tachypeza nubila Meigen – Eglov Isl., Kurgenitsy, Lipovitsy, Polya, Vavlok Isl., Vorobyi

Tachypeza truncorum Fallén – Lipovitsy, Polya
Tachydromia aemula Loew – Khvost Isl.
Drapetis parilis Collin – Nizhneje Myagrozero

Lonchopteridae
Lonchoptera fallax de Meijere – Klimenicy, Lelikovo, Lyudskoi Isl.
Lonchoptera lutea Panzer – Kizhi Isl., Vegoruksy, Vorobyi

Platypezidae
Microsania pectipennis Meigen – Bol. Lelikovskiy Isl., Klimenicy
Callomyia amoena Meigen – Klimenicy, Lyudskoi Isl., Myal’ Isl.
Callomyia speciosa Meigen – Eglov Isl., Lyudskoi Isl.
Agathomyia elegantula Fallén – Lipovitsy
Polyborivora ornata Meigen – Polya
Polyborivora picta Meigen – Tipintys
Platypeza consobrina Zetterstedt – Myagrozero
Platypeza fasciata Meigen – Myagrozero
Platypeza connexa Boheman – Tipintys

Phoridae
Anevrina thoracica Meigen – Kizhi Isl.

Pipunculidae
Chalarus holosericeus Meigen – Podyelniki
? Chalarus spurius Fallén – Podyelniki
Verrallia acta Fallén – Eglov Isl., Khvost Isl., Rogachev Isl., Turastamozero
Nephrocerus flavicornis Zetterstedt – Oyatevschina
Tomosmaryella geniculata Meigen – Lipovitsy
Dorylomorpha maculata Walker – Kurgenitsy, Podyelniki, Verkhnee Myagrozero
? Cephalops semifemosus Kowarz – Turastamozero
? Eudorylas terminalis Thomson – Turastamozero

Syrphidae
Paragus albifrons Fallén – Vorobyi
Paragus bicolor Fabricius – Eglov Isl., Vorobyi
Paragus finitimus Goedlind – Sennaya Guba, Tolvuya, Vikshezero
Paragus pecchiolii Rondani – Vikshezero
Paragus tibialis Fallén – Oyatevschina
Baccha elongata Fabricius – Bol. Lelikovskiy Isl., Eglov Isl., Lelikovo, Paleostrov Isl.,
Polya, Tipintys, Turastamozero, Velikaya Guba, Verkhnee Myagrozero, Volkostrov Isl.
Platycheirus albimanus Fabricius – Kuivakhda Isl., Kurgenitsy, Lyudskoi Isl., Vikshezero
Platycheirus angustatus Zetterstedt – Sennaya Guba
Platycheirus clypeatus Meigen – Kosmozero, Lelikovo, Lyudskoi Isl., Nizhneje
Myagrozero, Sennaya Guba, Tipintys
Platycheirus europaeus Goedlind, Maibach & Speight – Vikshezero
Platycheirus fulviventris Macquart – Eglov Isl., Rogachev Isl.
Platycheirus granditarsus Förster – Bol. Lelikovskiy Isl., Klimenicy, Kurgenitsy,
Nizhneje Myagrozero, Podyelniki, Turastamozero, Volkostrov Isl.
Platycheirus immarginatus Zetterstedt – Kosmozero
Platycheirus occultus Goedlind, Maibach & Speight – Turastamozero
Platycheirus peltatus Meigen – Kizhi Isl., Velikaya Niva
Platycheirus rosarum Fabricius – Eglov Isl., Kizhi Isl.
Platycheirus scambus Staeger – Kopanets lake, Velikaya Niva
Platycheirus scutatus Meigen – Kosmozero, Kurgenitsy
Xanthandrus comtus Harris – Tipintys, Uzkaya Salma
Melanostoma mellinum L. – Eglov Isl., Khvost Isl., Kopanets lake, Kosmozero, Kurgen-
itsy, Kuzaranda, Lelikovo, Nizhneje Myagrozero, Podyelniki, Rogachev Isl., Turasta-
mozero, Velikaya Niva, Verkhnee Myagrozero, Vikshezero, Volkostrov Isl., Vorobyi
Melangyna compositarum Verrall – Turastamozero, Verkhnee Myagrozero
Melangyna umbellatarum Fabricius – Khvost Isl., Kizhi Isl., Vorobyi
Meligramma guttata Fallén – Klimenicy
Leucozona glauca L. – Kurgenitsy, Nizhneje Myagrozero, Turastamozero, Velikaya Niva, Verkhnee Myagrozero, Vorobyi
Leucozona inopinata Doczkal – Uzkaya Salma
Leucozona lateraria Müllèr – Khvost Isl., Kurgenitsy, Nizhneje Myagrozero, Paleostrov Isl., Rogachev Isl.
Leucozona lucorum L. – Kizhi Isl., Oyatevshchina, Velikaya Niva
Epistrophe flavæ Doczkal & Schmid – Eglov Isl.
Epistrophe grossulariae Meigen – Turastamozero, Vorobyi
Eriozona erratica L. – Tambitsy
Scaeva pyrastrì L. – Vegoruksy, Velikaya Niva, Vorobyi
Scaeva selenitica Meigen – Kurgenitsy, Nizhneje Myagrozero, Turastamozero, Verkhnee Myagrozero
Meliscaeva cinctella Zetterstedt – Lipovitsy, Turastamozero, Vikshezero, Vorobyi
Didea fasciata Macquart – Lipovitsy, Uzkaya Salma
Didea intermedia Loew – Eglov Isl., Kurgenitsy, Turastamozero, Vegoruksy
Dasysyrphus hilaris Zetterstedt – Eglov Isl., Vikshezero
Dasysyrphus pinastri DeGeer – Eglov Isl., Vikshezero
Dasysyrphus tricinctus Fallén – o. B.Klimeckiy, Klimenicy, Kopanets lake, Nizhneje Myagrozero, Oyatevshchina, Turastamozero, Velikaya Niva, Vorobyi
Dasysyrphus venustus Meigen – Eglov Isl., Vikshezero
Episyrphus balteatus DeGeer – Kizhi Isl., Kosmozero, Oyatevshchina, Turastamozero, Uzkaya Salma, Vikshezero, Vorobyi
Eupeodes bucculatus Rondani – Turastamozero, Vorobyi
Eupeodes corollae Fabricius – Nizhneje Myagrozero
Eupeodes latifasciatus Macquart – Klimenicy
Eupeodes lundecki Soot Ryen – Velikaya Niva, Vorobyi
Eupeodes nitens Zetterstedt – Turastamozero
Syrrhus admirandus Goeldlin – Vikshezero
Syrrhus ribesii L. – Eglov Isl., Khvost Isl., Turastamozero, Vikshezero, Vorobyi
Syrrhus torus Osten-Sacken – Eglov Isl., Kizhi Isl., Nizhneje Myagrozero, Vorobyi
Syrrhus virgata Goeldlin – Eglov Isl., Tipinitsy, Turastamozero, Vertilovo, Vikshezero, Volkostrov Isl., Vorobyi
Parasyrphus annulatus Zetterstedt – Velikaya Niva
Parasyrphus lineolus Zetterstedt – Nizhneje Myagrozero
Parasyrphus nigritarsis Zetterstedt – Vikshezero
Sphaerophoria bataeva Goeldlin – Eglov Isl., Podyelniki, Vikshezero
Sphaerophoria interrupta Fabricius – Kizhi Isl., Kosmozero, Lyudskoi Isl., Vikshezero, Vorobyi
Sphaerophoria menthastri L. – Kuzaranda, Paleostrov Isl.
Sphaerophoria philantha Meigen – Kurgenitsy, Sennaya Guba, Vikshezero
Sphaerophoria taeniata Meigen – Kizhi Isl., Kuzaranda, Podyelniki, Rogachev Isl., Vorobyi
Sphaerophoria virgata Goeldlin – Eglov Isl., Tipinitisy
Xanthogramma pedissequum Harris – Rogachev Isl., Vorobyi
Xanthogramma stackelbergi Violovitsh – Khvost Isl., Rogachev Isl.
Ceriana conopoides L. – Turastamozero
Chrysotoxum arcuatum L. – Velikaya Guba, Vikshezero
Chrysotoxum bicinctum L. – Eglov Isl., Khvost Isl., Kuzaranda, Rogachev Isl., Turastamozero, Vikshezero, Vorobyi
Chrysotoxum fasciolatum DeGeer – Kosmozero
Chrysotoxum festivum L. – Shun’ga
Rhingia borealis Ringdahl – Oyatevchina, Velikaya Niva
Rhingia campestris Meigen – Kizhi Isl., Tolvuya
Hammerschmidtia ferruginea Fallén – Klmenicy, Velikaya Niva
Neoascia genticulata Meigen – Vikshezero
Neoascia tenur Harris – Eglov Isl., Ernitskiy Isl., Kizhi Isl., Klmenicy, Kurgenitsy, Leliikovo, Lyudskoi Isl., Sennaya Guba, Vikshezero
Sphegina clunipes Fallén – Klmenicy, Kopanets lake, Lipovitsy
Sphegina sibirica Stackelberg – Kizhi Isl., Klmenicy, Tipinitsy, Vavlok Isl., Vikshezero
Pipizella certa Violovitsh – Rogachev Isl.
Pipizella viduata L. – Klmenicy, Kuzaranda, Lyudskoi Isl., Rogachev Isl., Turastamozero, Vikshezero
Pipiza australis Meigen – Leliikovo, Velikaya Niva
Pipiza binaculata Meigen – Leliikovo, Paleostrov Isl.
Pipiza quadrinaculata Panzer – Velikaya Guba, Vikshezero
Orthonevra erythrogastra Malm – Sennaya Guba
Orthonevra stackelbergi Thompson & Torp – Klmenicy, Vikshezero
? Chrysogaster virescens Loew – Sennaya Guba
Cheilosia carbonaria Egger – Oyatevchina, Vikshezero
Cheilosia flavipes Panzer – Kizhi Isl., Tolvuya
Cheilosia frontalis Loew – Klmenicy
Cheilosia gigantea Zetterstedt – Klmenicy
Cheilosia illustrata Harris – Eglov Isl., Kizhi Isl., Kosmozero, Kurgenitsy, Nizhneje Myagrozero, Oyatevchina, Rogachev Isl., Vorobyi
Cheilosia impressa Loew – Ernitskiy Isl.
Cheilosia longula Zetterstedt – Myagrozero, Nizhneje Myagrozero, Turastamozero, Velikaya Niva
Cheilosia mutabilis Fallén – Kurgenitsy, Podyelniki, Rogachev Isl., Turastamozero, Vegeruksy, Velikaya Niva, Verkhnee Myagrozero, Volkostrov Isl.
Cheilosia pagana Meigen – Eglov Isl., Kizhi Isl., Kurgenitsy, Leliikovo, Nizhneje Myagrozero, Oyatevchina, Podyelniki, Rogachev Isl., Tolvuya, Vikshezero, Vorobyi
Cheilosia pubera Zetterstedt – Klmenicy, Oyatevchina, Sennaya Guba
Cheilosia rotundiventris Becker – Kizhi Isl.
Cheilosia scutellata Fallén – Velikaya Niva
Cheilosia sootrenyi Nielsen – Vikshezero
Cheilosia variabilis Panzer – Kainos Isl.
Cheilosia vernalis Fallén – Kizhi Isl., Leliikovo, Nizhneje Myagrozero, Velikaya Niva, Vorobyi
? Cheilosia vicina Zetterstedt – Vikshezero
Cheilosia vulpina Meigen – Kizhi Isl., Klmenicy
Chamaesyrphus scaevoides Fallén – Ernitskiy Isl., Paleostrov Isl.
Volucella pellucens L. – Eglov Isl., Khvost Isl., Nizhneje Myagrozero, Podyelniki, Rogachev Isl., Turastamozero
Sericomyia lappona L. – Podyelniki, Uzkaya Salma
Sericomyia nigra Portschinsky – Nizhneje Myagrozero
Sericomyia silentis Harris – Dianova Gora, Tambitsy, Turastamozero
Eristalis abusiva Collin – Kosmozero, Kurgenitsy
Eristalis anthophorina Fallén – Shun’ga
Eristalis arbustorum L. – Lipovitsy, Nizhneje Myagrozero, Verkhnee Myagrozero, Vorobyi
Eristalis cryptarum Fabricius – Tolvuya
Eristalis horticola DeGeer – Kizhi Isl.
Eristalis interrupta Poda – Eglov Isl., Nizhneje Myagrozero, Turastamozero, Vegoruksy, Velikaya Niva, Verkhnee Myagrozero, Vorobyi
Eristalis intricaria L. – Shun’ga, Vegoruksy
Eristalis obscura Loew – Eglov Isl., Kurgenitsy, Nizhneje Myagrozero, Turastamozero, Verkhnee Myagrozero, Vikshezero, Vorobyi
Eristalis oestracea L. – Kizhi Isl.
Eristalis rapium Fabricius – Oyatevschina, Podyelniki, Turastamozero
Eristalis tenax L. – Turastamozero, Vegoruksy
Myathropa flora L. – Eglov Isl., Podyelniki, Turastamozero
Anasimyia interpuncta Harris – Lelikovo
Anasimyia lineata Fabricius – Eglov Isl., Podyelniki
Anasimyia lunulata Meigen – Uzkaya Salma, Vikshezero, Vorobyi
Helophilus affinis Wahlberg – Lyudskoi Isl., Nizhneje Myagrozero, Oyatevschina, Podyelniki, Turastamozero, Vavlok Isl., Vikshezero, Volkostrov Isl., Vorobyi
Helophilus trivittatus Fabricius – Kizhi Isl., Kurgenitsy
Parahelophilus consimilis Malm – Rogachev Isl., Volkostrov Isl., Vorobyi
Eumerus strigatus Fallén – Nizhneje Myagrozero, Rogachev Isl., Velikaya Niva
Microdon miki Doczkal & Schmid – Kosmozero
Criorrhina asilica Fallén – Polya, Velikaya Niva, Vikshezero
Blera fallax L. – Lipovitsy, Vegoruksy
Xylota abiens Meigen – Podyelniki
Xylota caeruleiventris Zetterstedt – Polya
Xylota flororum Fabricius – Eglov Isl., Nizhneje Myagrozero, Podyelniki, Vegoruksy, Verkhnee Myagrozero
Xylota jakutorum Bagatschanova – Eglov Isl.
Xylota meigeniana Stackelberg – Eglov Isl., Klimenicy, Kurgenitsy, Kuzaranda, Nizhneje Myagrozero, Podyelniki, Polya, Turastamozero
Xylota segnis L. – Eglov Isl., Kosmozero, Kuzaranda, Nizhneje Myagrozero, Podyelniki, Vegoruksy, Velikaya Niva, Verkhnee Myagrozero
Xylota sylvarum L. – Khvost Isl., Lipovitsy, Oyatevschina, Polya, Turastamozero
Xylota tarda Meigen – Eglov Isl., Khvost Isl., Nizhneje Myagrozero, Oyatevschina, Podyelniki, Tambitsy, Verkhnee Myagrozero
Xylota xanthocnema Collin – Klimenicy, Verkhnee Myagrozero
Chalcosyrphus nemorum Fabricius – Kosmozero, Podyelniki, Rogachev Isl., Uzkaya Salma
Chalcosyrphus rufipes Loew – Eglov Isl.
Chalcosyrphus valgus Gmelin – Klimenicy
Syritta pipiens L. – Kosmozero
Spilomyia diophthalma L. – Kurgenitsy, Oyatevschina, Podyelniki, Turastamozero, Uzkaya Salma, Vorobyi
Temnostoma angustistriatum Krivosheina – Klimenicy, Kosmozero, Rogachev Isl., Tipinitys, Vikshezero
Temnostoma carens Gauntz – Eglov Isl.
Temnostoma sericorniaeforome Portschinsky – Eglov Isl., Kizhi Isl., Kurgenitsy, Rogachev Isl., Turastamozero, Uzkaya Salma, Vegoruksy
Conopidae
Conops quadrifasciatus DeGeer – Bol. Lelikovskiy Isl., Oyatevschina, Podyelniki, Turastamozero, Verkhnee Myagrozero, Vorobyi
Myopa buccata L. – Vikshezero
Sicus ferrugineus L. – Eglov Isl., Kizhi Isl., Kurgenitsy, Nizhneje Myagrozero, Oyatevschina, Podyelniki, Sennaya Guba, Vikshezero, Verkhnee Myagrozero, Vorobyi
Chloropidae
Gaurax dubius Macquart – Lelikovo
Elachiptera cornuta Fallén – Bol. Lelikovskiy Isl., Eglov Isl., Ernitskiy Isl., Kurgenitsy, Lelikovo, Lyudskoi Isl., Myagrozero, Podyelniki, Sennaya Guba
Elachiptera tuberculifera Corti – Lelikovo, Lyudskoi Isl., Myagrozero, Nizhneje Myagrozero
Lasiamba palposa Fallén – Vorobyi
Siphonella oscinina Fallén – Vorobyi
Tricimba cincta s.l. – Vorobyi
Oscinella cariciphila Collin – Sennaya Guba
Oscinella frit L. – Lelikovo
Oscinella pusilla Meigen – Myagrozero, Sennaya Guba
Rhopalopterum fasciola Meigen – Kurgenitsy
Rhopalopterum femorale Collin – Lelikovo, Lyudskoi Isl.
Dicraeus fennicus Duda – Kurgenitsy
Meromyza ornata Wiedemann – Lelikovo
? Meromyza pluriseta Peterfi – Sennaya Guba
Meromyza saltatrix L. – Lelikovo, Sennaya Guba
Cetema cereris Fallén – Nizhneje Myagrozero, Podyelniki, Vorobyi
Cetema myopinum Loew – Oyatevchina
Chlorops frontosus Meigen – Lelikovo
Chlorops hypostigma Meigen – Oyatevchina
Chlorops limbata Meigen – Ernitskiy Isl., Klimenicy, Kurgenitsy, Lipovitsy, Polya, Sennaya Guba
Chlorops planifrons Loew – Khvost Isl.
Chlorops ringens Loew – Vorobyi
? Chlorops rossicus Smirnov – Polya
Chlorops scalaris Meigen – Kuzaranda, Sennaya Guba
Chlorops speciosa Meigen – o. B.Klimeckiy, Eglov Isl., Klimenicy, Nizhneje Myagrozero, Podyelniki, Vikshezero
Chlorops troglodytes Zetterstedt – o. B.Klimeckiy, Podyelniki, Vorobyi
Thaumatomyia glabra Meigen – Kuzaranda, Sennaya Guba

Thaumatomyia hallandica Anderson – Kuzaranda, Lelikovo, Sennaya Guba

Thaumatomyia notata Meigen – Kuzaranda

Thaumatomyia rufa Macquart – Lelikovo, Sennaya Guba

Thaumatomyia trifasciata Zetterstedt – Kurgenitsy

Aphanotrigonum trilineatum Meigen – Sennaya Guba

Eribulus nana Zetterstedt – Sennaya Guba

Incertella albipalpis Meigen – Kuzaranda

Speccafrons halophila Duda – Sennaya Guba

Milichiidae

Phylomyza equitans Hendel – Sennaya Guba

Phylomyza secunicornis Fallén – Rogachev Isl., Vorobyi

Neophylomyza acyglassa Villeneuve – Lyudskoi Isl.

Ephydridae

Discomyza incurva Fallén – Lyudskoi Isl.

Notiphila aquatica Becker – Klinemincy

Nostima picta Fallén – Bol. Lelikovskiy Isl.

Limmellia stenhammari Zetterstedt – Myagrozero

Coenia curvicuda Meigen – Rogachev Isl., Sennaya Guba, Vikshezero

Coenia palustris Fallén – Lelikovo

Drosophilidae

Stegana baechlii Laštovka & Maca – Turastamozero

Stegana furt a L. – Ernitskiy Isl., Kizhi Isl., Lelikovo, Rogachev Isl., Sennaya Guba

Chymomyza fuscimana Zetterstedt – Turastamozero

Drosophila eski Lakoavaara & Lankinen – Yu. Oleny Isl.

Drosophila histrio Meigen – Kainos Isl., Uzkaya Salma, Vavlok Isl.

Drosophila littoralis Meigen – Yu. Oleny Isl.

Drosophila phalerata Meigen – Tambitsy, Verkhnee Myagrozero

Drosophila transversa Fallén – Kizhi Isl., Poly, Turastamozero, Uzkaya Salma, Verkhnee Myagrozero, Volkostrov Isl., Vorobyi

Hirtorosophila trivittata Strobl – Lipovitsy

Lordiphosa fenestrarum Fallén – Kizhi Isl.

Lordiphosa hexasticha Papp – Podyelniki

Lordiphosa nigricolor Strobl – Kizhi Isl.

Scaptomyza consimilis Hackman – Tipintsy, Turastamozero

Scaptomyza graminum Fallén – Tipintsy

Scaptomyza pallida Zetterstedt – Kizhi Isl., Nizhneje Myagrozero, Vegoruksy, Vorobyi

Diastatidae

Diastata nebulosa Fallén – Lipovitsy

Chamaemyiidae

Chamaemyia aestica Tanasijtshuk – Ernitskiy Isl., Lelikovo, Myagrozero

Chamaemyia elegans Panzer – Ernitskiy Isl., Lelikovo, Lyudskoi Isl., Myal’ Isl., Sennaya Guba

Chamaemyia geniculata Zetterstedt – Lelikovo

Chamaemyia junecorum Fallén – Kurgenitsy, Lyudskoi Isl., Myagrozero, Sennaya Guba

Chamaemyia polystigma Meigen – Kurgenitsy, Lelikovo

Lauxaniidae

Homoneura interstincta Fallén – Uzkaya Salma

Homoneura lamellata Becker – Lipovitsy, Poly, Turastamozero
Homoneura tenera
Loew – Khvost Isl., Lyudskoi Isl., Turastamozero, Vikshezer

Minettia helvola
Becker – Khvost Isl., Lipovitsy, Podyelniki, Polya, Tambitsy, Turastamozero, Verkhnee Myagrozero

Minettia loewi
Schiner – Ernitskiy Isl., Klimenicy, Lipovitsy, Polya, Tipintisy

Minettia longipennis

Minettia lupulina
Fabricius – Kainos Isl., Khvost Isl., Kizhi Isl., Klumenicy, Nizhneje Myagrozero, Oyatevshchina, Sennaya Guba, Shunevskiy Isl., Tipintisy, Verkhnee Myagrozero, Vikshezer, Volkneevsky Isl., Vorobyi

Tricholauxania praeusta

Cnemacantha muscaria
Fallén – Kizhi Isl., Sennaya Guba

Meiosimyza affinis

Meiosimyza decempunctata

Meiosimyza decipiens
Loew – Khvost Isl., Klumenicy, Sennaya Guba, Uzkaia Salma

Meiosimyza illota
Loew – Kizhi Isl., Vikshezer

Meiosimyza mihaljyi
Papp – Vorobyi

Meiosimyza platycpela
Loew – Lipovitsy, Lyudskoi Isl., Podyelniki

Meiosimyza pora

Meiosimyza subfasciata
Zetterstedt – Kizhi Isl., Kurgenitsy, Vikshezer

Poecilolycia viitata
Walker – Ernitskiy Isl., Oyatevshchina

Sapromyza annabilis
Frey – Polya

Sapromyza basalis

Sapromyza hyalinata

Sapromyza opaca
Becker – Vorobyi

Sapromyza sexpunctata
Meigen – Khvost Isl., Kosmozero, Nizhneje Myagrozero, Oyatevshch, Podyelniki, Turastamozero, Vorobyi

Sapromyza zetterstedti
Hendel – Lipovitsy, Uzkaia Salma

Calliopum aeneum
Fallén – Kuzaranda

Calliopum elisae
Meigen – Kuzaranda, Nizhneje Myagrozero, Sennaya Guba, Tipintisy, Turastamozero

Lauxia cylindricornis

Micropezidae

Rainieria latifrons
Loew – Lipovitsy

Micropsa corrigiolata
L. – Toluyu

Neridae

Neria cibaria
L. – Eglov Isl.

Neria commutata
Czerny – Eglov Isl., Ernitskiy Isl., Lelikovo, Paleostrov Isl., Rogachev Isl., Tipintisy

Acartophthalmidae

Acartophthalmus bicolor
Oldenberg – Lyudskoi Isl.
Anthomyzidae
? Anthomyza dissors Collin – Kopanets lake
Anthomyza gracilis Fallén – Kizhi Isl.

Clusiidae
Hendelia beckeri Czerny – Lyudskoi Isl., Shunevskiy Isl., Vikshezero
Clusiodes albimanus Meigen – Kopanets lake, Lipovitsy, Shunevskiy Isl., Turastamozero
Clusiodes apicalis Zetterstedt – Ernitskiy Isl., Uzkaya Salma
Clusiodes geomyzinus Fallén – Oyatevschina
Clusiodes pictipes Zetterstedt – Oyatevschina, Vorobyi
Clusiodes ruficollis Meigen – Lyudskoi Isl.
Clusia flavia Meigen – Klimenicy, Lipovitsy, Oyatevschina, Polya, Uzkaya Salma, Vikshezero

Megamerinidae
Megamerina dolium Fabricius – Kopanets lake, Kurgenitsy, Polya, Vikshezero

Odomiidae
Odinia ornata Zetterstedt – Turastamozero

Opomyzidae
Anomalochaeta guttipennis Zetterstedt – Shunevskiy Isl.
Opomyza punctella Fallén – Podyelniki
Geomyza hackmani Narshuk – Nizhneje Myagrozero
Geomyza tripunctata Fallén – Lyudskoi Isl.

Pallopteridae
Toxoneura modesta Meigen – Nizhneje Myagrozero
Toxoneura trimacula Meigen – Podyelniki, Tipintsy

Dryomyzidae
Dryomyza decrepita Zetterstedt – Ernitskiy Isl., Klimenicy, Vorobyi

Phaemyiidae
Pelidnaptera fuscipennis Meigen – Turastamozero

Sciomyzidae
Pherbellia albocostata Fallén – Klimenicy, Lipovitsy, Oyatevschina, Podyelniki, Polya, Turastamozero, Uzkaya Salma
Pherbellia alpina Frey – Lipovitsy
Pherbellia argyra Verbeke – Lelikovo, Sennaya Guba
Pherbellia brunipes Meigen – Sennaya Guba
Pherbellia dubia Fallén – Ernitskiy Isl., Kizhi Isl., Lipovitsy, Podyelniki, Vorobyi
Pherbellia griseola Fallén – Bol. Lelikovskiy Isl., Kazhma, Lelikovo, Sennaya Guba
Pherbellia pallidiventris Fallén – Kopanets lake, Kosmozero, Lipovitsy, Paleostrov Isl., Podyelniki, Velikaya Niva
Pherbellia schoenherri Fallén – Kurgenitsy, Vorobyi
Pherbellia sordida Hendel – Kurgenitsy, Sennaya Guba, Shunevskiy Isl.
Pherbellia ventralis Fallén – Kurgenitsy
Pteromicra angustipennis Staeger – Ernitskiy Isl.
Pteromicra glabricula Fallén – Ernitskiy Isl., Sennaya Guba, Shunevskiy Isl., Vikshezero
Colobaea distincta Meigen – Shunevskiy Isl.
Renocera pallida Fallén – Ernitskiy Isl., Klimenicy, Shunevskiy Isl., Vikshezero
Renocera strobli Hendel – Vikshezero
Anticheta atriseta Loew – Shunevskiy Isl., Vikshezero
Ectinocera borealis Zetterstedt – Uzkaya Salma
Tetanocera amurensis Hendel – Klimenicy
Tetanocera arrogans Meigen – Ernitskiy Isl., Khvost Isl., Kizhi Isl., Klimenicy, Kurgenitsy, Lelikovo, Sennaya Guba, Tolvuya, Vegoruksy
Tetanocera elata Fabricius – Bol. Lelikovskiy Isl., Kizhi Isl., Podyelniki, Sennaya Guba, Tipintsky, Velikaya Niva, Volkostrov Isl., Vorobyi
Tetanocera ferruginea Fallén – Kizhi Isl., Klimenicy, Tipintsky, Vorobyi
Tetanocera freyi Stackelberg – Kurgenitsy, Tipintsky, Volkostrov Isl.
Tetanocera fuscinervis Zetterstedt – Ernitskiy Isl., Leilikovo, Lyudskoi Isl.
Tetanocera hyalipennis von Roser – Kurgenitsy, Vorobyi
Tetanocera montana Day – Kazhma, Kurgenitsy
Tetanocera phyllophora Melander – Ernitskiy Isl., Kizhi Isl., Myagrozero, Nizhnje Myagrozero, Tipintsky, Verkhnee Myagrozero
Tetanocera robusta Loew – Bol. Leilikovskiy Isl., Kurgenitsy, Rogachev Isl., Shunevskiy Isl., Tipintsky
Euthycera chaerophylli Fabricius – Nizhnje Myagrozero
Pherbina coryleti Scopoli – Bol. Leilikovskiy Isl., Ernitskiy Isl., Kizhi Isl., Kurgenitsy, Tipintsky
Psacadina zernyi Mayer – Sennaya Guba
Elgiva cucularia L. – Kurgenitsy, Sennaya Guba
Ilione lineata Fallén – Kurgenitsy, Vorobyi
Hydromya dorsalis Fabricius – Vikshezero
Limnia paludicola Elberg – Kurgenitsy, Oyatevskchina, Polya, Tipintsky, Uzkyaya Salma, Velikaya Guba, Verkhnee Myagrozero
Limnia unguicornis Scopoli – Nizhnje Myagrozero, Rogachev Isl.
Sepedon spinipes Scopoli – Kizhi Isl., Klimenicy, Leilikovo, Sennaya Guba, Volkostrov Isl.
Dichetophora finlandica Verbeke – Volkostrov Isl.
Tetanura pallidiventris Fallén – Klimenicy

Sepsidae
Themira annulipes Meigen – Kizhi Isl., Kuzaranda, Nizhnje Myagrozero, Oyatevskchina, Vorobyi
Themira germanica Duda – Bol. Leilikovskiy Isl.
Themira leachi Meigen – Nizhnje Myagrozero
Nemopoda nittidula Fallén – Rogachev Isl., Vikshezero
Sepsis cyntiopa L. – Kizhi Isl., Kuzaranda, Sennaya Guba
Sepsis orthocnemis Frey – Myagrozero, Nizhnje Myagrozero
Sepsis punctata Fabricius – Bol. Leilikovskiy Isl., Kizhi Isl., Nizhnje Myagrozero, Vikshezero

Heleomyzidae
? Borboropsis puberula Zetterstedt – Vorobyi
Neoleria ruficeps Zetterstedt – Myagrozero
Morpholeria ruficornis Meigen – Bol. Leilikovskiy Isl.
Scolicentra amplicornis Zernyi – Kurgenitsy, Turastamozero
Suillia apicalis Loew – Khvost Isl., Turastamozero
Suillia flava Meigen – Eglov Isl., Nizhneje Myagrozero, Oyatevschina, Turastamozero, Uzkaya Salma, Vorobyi

Suillia flavifrons Zetterstedt – Bol. Lelikovskiy Isl., Klimenicy, Polyta, Tambitsy

Suillia humilis Meigen – Bol. Lelikovskiy Isl., Lipovitsy, Uzkaya Salma, Verkhnee Myagrozero, Vorobyi

Suillia laevis Loew – Bol. Lelikovskiy Isl., Myagrozero, Podyelnniki, Polyta, Tipinitsy, Turastamozero, Volkostrov Isl., Vorobyi

Suillia mikii Pokorny – Palestrov Isl.

Suillia nemorum Meigen – Turastamozero

Suillia parva Loew – Podyelnniki, Tipinitsy

Suillia quadrilineata Czerny – Verkhnee Myagrozero

Sphaeroceridae

Crumomyia pedestris Meigen – Klimenicy

Psilidae

Chamaepsila atrata Meigen – Eglov Isl., Kizhi Isl., Klimenicy, Kuivakhda Isl., Lelikovo, Lyudskoi Isl., Sennaya Guba, Vikshezero, Vorobyi

Chamaepsila humeralis Zetterstedt – Kizhi Isl., Rogachev Isl., Vorobyi

? **Chamaepsila nigra** Fallén – Kizhi Isl.

Chamaepsila nigricornis Meigen – Vorobyi

Chamaepsila pallida Fallén – Kurgenitsy

Chamaepsilia pectoralis Meigen – Kopanets lake, Podyelnnaki

? **Chamaepsilia rosea** Fabricius – Kizhi Isl., Vorobyi

Psila fimetaria L. – Eglov Isl., Khvost Isl., Rogachev Isl.

Psila merdaria Collin – Sennaya Guba, Vikshezero

Loxocera nigrifrons Macquart – Myal’ Isl.

Chyliza vittata Meigen – Kosmozero

Tanypezidae

Strongylophthalmyia pictipes Frey – Kopanets lake, Polyta, Vavlok Isl.

Strongylophthalmyia ustulata Zetterstedt – Bol. Lelikovskiy Isl., Kopanets lake, Lipo-vitsy, Podyelnniki, Polyta

Tanypeza longimana Fallén – Kopanets lake, Nizhneje Myagrozero, Podyelnniki, Tipinitsy

Lonchaeidae

? **Dasios occultus** Collin – Vavlok Isl.

Lonchaea laxa Collin – Uzkaya Salma

Lonchaea patens Collin – Verkhnee Myagrozero

Ulidiidae

Homalocephala angustata Wahlberg – Podyelnniki, Vegoruksy, Verkhnee Myagrozero, Vikshezero

Homalocephala buirbrata Wahlberg – Kurgenitsy, Podyelnniki, Tambitsy

Melieria crassipennis Fabricius – Bol. Lelikovskiy Isl.

Herina frondescentiae L. – Kuzaranda

Tephritidae

Urophora cuspidata Meigen – Lelikovo

Urophora jaceana Hering – Lelikovo, Rogachev Isl., Sennaya Guba

? **Urophora nautiliana** Macquart – Vikshezero

? **Urophora solsticialis** L. – Lelikovo, Nizhneje Myagrozero, Oyatevschina, Sennaya Guba, Vorobyi

Urophora stigma Loew – Kuzaranda, Sennaya Guba

Rhagoletis cerasi L. – Nizhneje Myagrozero, Oyatevschina, Podyelnniki, Vorobyi
Euleia heraclei L. – Rogachev Isl.
Myoleja lucida Fallén – Kainos Isl., Klimenicy, Rogachev Isl., Vavlok Isl.
Cryptsciura rotundiventris Fallén – Eglov Isl., Rogachev Isl., Volkostrov Isl.
Chaetorellia loricata Rondani – Eglov Isl., Kizhi Isl., Kurgenitsy, Lelikovo, Lyudskoi Isl., Rogachev Isl., Sennaya Guba
? Terellia gyroacochroma Hering – Rogachev Isl.
Terellia plagiata Dahlbom – Volkostrov Isl., Vorobyi
Terellia ruficauca Fabricius – Kurgenitsy
Terellia tussilaginis Fabricius – Kazhma
Terellia winthemi Meigen – Polya
Orellia scorzonerae Robineau-Desvoidy – Lelikovo, Lyudskoi Isl., Sennaya Guba
Xyphosia miliaria Schrank – Verkhnee Myagrozero
? Campiglossa doronici Loew – Vikshezero
Tephritis angustipennis Loew – Tipintsy
Tephritis conura Loew – Kizhi Isl.
Tephritis kyoscyani L. – Polya

Hippoboscidae
Ornthomya chloropus Bergroth – Klimenicy, Uzkaya Salma
Lipoptena cervi L. – Tipintsy

Fanniidae
Fannia parva Stein – Vorobyi
Fannia polychaeta Stein – Polya
Fannia posticata Meigen – Podyelniki
Fannia ringdahlana Collin – Vikshezero
Fannia ronnani Strobl – Vikshezero
Fannia serena Fallén – Rogachev Isl.
Fannia sociella Zetterstedt – Nizhneje Myagrozero, Podyelniki, Turastamozero, Verkhnee Myagrozero
Fannia spathiophora Malloch – Lyudskoi Isl., Polya, Vikshezero

Muscidae
Mydaea affinis Myade – Polya, Uzkaya Salma
Mydaea humeralis Robineau-Desvoidy – Eglov Isl.
Mydaea ortonevra Macquart – Lipovitsy
Mydaea ortonevra Macquart – Turastamozero
Mydaea urbana Meigen – Turastamozero
? Helina depuncta Fallén – Podyelniki
Helina evecta Harris – Eglov Isl., Khvost Isl., Nizhneje Myagrozero, Podyelniki, Polya, Vegoruksy
Helina impuncta Fallén – Eglov Isl.
Helina pubiseta Zetterstedt – Lipovitsy, Polya
Helina subvittata Seguy – Eglov Isl.
Graphomyia maculata Scopoli – Kurgenitsy
? Spilogona carbonella Zetterstedt – Lipovitsy
Spilogona contractifrons Zetterstedt – Eglov Isl., Podyelniki, Polya, Vegoruksy
? Spilogona karelica Tiensuu – Podyelniki
Coenosia intermedia Fallén – Lipovitsy, Podyelniki
Coenosia mollicula Fallén – Podyelniki, Turastamozero, Uzkaya Salma, Verkhnee Myagrozero
Coenosia rufipalpis Meigen – Khvost Isl., Podyelniki
Coenosia trilineella Zetterstedt – Khvost Isl., Uzkaya Salma
Thricops albitalis Zetterstedt – Eglov Isl., Uzkaya Salma
Thricops cunctans Meigen – Eglov Isl., Khvost Isl., Rogachev Isl., Verkhnee Myagrozero
Thricops diaphanus Wiedemann – Turastamozero, Uzkaya Salma, Vikshezero
Thricops genarum Zetterstedt – Podyelniki
Thricops lividiventris Zetterstedt – Podyelniki
Thricops longipes Zetterstedt – Eglov Isl.
Thricops nigrifrons Robineau-Desvoidy – Eglov Isl.
Thricops nigritellus Zetterstedt – Lyudskoi Isl.
Thricops semicinereus Wiedemann – Eglov Isl., Lipovitsy, Nizhneje Myagrozero, Turastamozero, Vogoruxy

? Drymeia hamata Fallén – Nizhneje Myagrozero
Hydrotaea borussica Stein – Lipovitsy, Polya, Turastamozero, Uzkaya Salma, Vorobyi
Hydrotaea militaris Meigen – Lipovitsy
Hydrotaea pandellei Stein – Eglov Isl., Kosmozero, Lipovitsy, Oyatevschina, Polya, Turastamozero, Uzkaya Salma
Hydrotaea pellicens Portschinsky – Ernitskiy Isl., Kosmozero, Uzkaya Salma
Hydrotaea velutina Robineau-Desvoidy – Turastamozero
Musca levida Harris – Eglov Isl., Podyelniki
Phaonia angelicae Scopoli – Eglov Isl., Lipovitsy, Nizhneje Myagrozero, Polya, Turastamozero
Phaonia errans Meigen – Lipovitsy, Polya, Uzkaya Salma
Phaonia pallida Fabricius – Turastamozero
? Morellia hororum Fallén – Podyelniki, Polya, Uzkaya Salma
Morellia podagrica Loew – Lipovitsy, Polya, Uzkaya Salma
Mesembrina mystacea L. – Lipovitsy
Mesembrina resplendens Wahlberg – Bol. Lelikovskiy Isl., Klimenicy, Lipovitsy, Polya, Turastamozero, Uzkaya Salma
Stomoxys calcitrans L. – Podyelniki

Anthomyiidae
Botanophila brunnelinea Zetterstedt – Nizhneje Myagrozero
Botanophila fugax Meigen – Nizhneje Myagrozero
Botanophila hucketti Ringdahl – Nizhneje Myagrozero
Hydrophoria lancifer Harris – Eglov Isl., Lipovitsy, Turastamozero, Vogoruxy
Zaphne ambigua Fallén – Podyelniki
Zaphne caudata Zetterstedt – Eglov Isl., Podyelniki
Anthomyia plurisetosa Brullé – Oyatevschina
Anthomyia plurialis L. – Vorobyi
Anthomyia procellaris Rondani – Rogachev Isl.
Eutrichota frigida Zetterstedt – Polya
Pegomya circumpolaris Ackland et Griffiths – Turastamozero
Pegomya flavescutellata Zetterstedt – Lipovitsy
Pegomya fulgens Meigen – Podyelniki
Pegomya geniculata Bouché – Lipovitsy, Polya, Uzkaya Salma
Pegomya incisiva Stein – Podyelniki
Pegomya maculata Stein – Lipovitsy, Turastamozero
Pegomya pulchripes Loew – Podyelniki
Pegomya scapularis Zetterstedt – Polya, Turastamozero
Pegomya zonata Zetterstedt – Lipovitsy
Pegoplata infirma Meigen – Nizhnje Myagrozero
Pegoplata juvenilis Stein – Eglov Isl.
Heterostylodes pilfera Zetterstedt – Podyelniki
Delia coarctata Fallén – Nizhnje Myagrozero
Delia fabricii Holmgren – Nizhnje Myagrozero
Delia florilega Zetterstedt – Nizhnje Myagrozero
Delia lophota Pandellé – Turastamozero
Delia platula Meigen – Nizhnje Myagrozero, Turastamozero

Scathophagidae
Parallelomma vittatum Meigen – Kopanets lake, Lelikovo, Lyudskoi Isl., Paleostrov Isl., Turastamozero
Leptopa filiformis Zetterstedt – Khvost Isl.
Cordilura albipes Fallén – Eglov Isl., Kurgenitsy, Lipovitsy, Rogachev Isl., Velikaya Niva, Vikshezero
Cordilura ciliata Meigen – Kopanets lake, Kurgenitsy, Rogachev Isl., Vorobyi
Cordilura pubera L. – Kizhi Isl., Tipinitisy, Velikaya Niva
Cordilura pudica Meigen – Klimenicy
Megaphthalma pallida Fallén – Bol. Lelikovskiy Isl., Kopanets lake, Kurgenitsy, Lyudskoi Isl., Myagrozero, Tambitsy, Turastamozero, Uzkaya Salma, Velikaya Niva, Vikshezero, Volkostrov Isl., Vorobyi
Hexamitocera laxocerata Fallén – Tolvuya
Nanna armillata Zetterstedt – Vorobyi
Nanna flavipes Fallén – Kizhi Isl., Lyudskoi Isl., Oyatevschina
Nanna inermis Becker – Klimenicy
Cleigastra apicalis Meigen – Kurgenitsy, Lelikovo
Conisternum obscurum Fallén – Vorobyi
Scathophaga furcata Say – Klimenicy, Lyudskoi Isl., Myagrozero
Scathophaga inquinata Meigen – Rogachev Isl., Vorobyi
Scathophaga stercoraria L. – Kizhi Isl., Kuzaranda
Scathophaga suilla Fabricius – Ernitskiy Isl., Kizhi Isl., Oyatevschina, Tambitsy, Vorobyi
Chaetosa punctipes Meigen – Kizhi Isl., Kopanets lake, Lelikovo, Sennaya Guba
Microprosopa pallidicauda Zetterstedt – Kopanets lake, Tipinitisy
Hydromyza livens Fabricius – Podyelniki
Slaegeria kunzei Zetterstedt – Klimenicy, Vorobyi
Pogonota barbata Zetterstedt – Klimenicy, Kopanets lake, Kurgenitsy, Tipinitisy, Vegovruksy, Verkhnee Myagrozero

Calliphoridae
Bellardia viarum Robineau-Desvoidy – Kizhi Isl.
Calliphora vomitoria L. – Podyelniki
Cynomyia mortuorum L. – Eglov Isl., Kizhi Isl.
Eurychaeta palpalis Robineau-Desvoidy – Oyatevschina
Lucilia bufonivora Moniez – Eglov Isl., Podyelniki

Sarcophagidae
Amobia oculata Zetterstedt – Podyelniki
Metopia grandii Venturi – Podyelniki
Agria manillata Pandellé – Oyatevschina, Vorobyi
Brachicoma devia Fallén – Eglov Isl., Nizhnje Myagrozero, Oyatevschina, Podyelniki, Vorobyi
Sarcophaga albiceps Meigen – Nizhneje Myagrozero, Podyelniki, Vegoruksy
Sarcophaga aratrix Pandellé – Eglov Isl., Klimenicy, Nizhneje Myagrozero, Vikshezero
Sarcophaga caerulescens Zetterstedt – Eglov Isl., Nizhneje Myagrozero, Vorobyi
Sarcophaga carnaria L. – Paleostrov Isl.
Sarcophaga haemorrhoides Böttcher – Nizhneje Myagrozero
Sarcophaga melanura Meigen – Rogachev Isl.
Sarcophaga schuetzei Kramer – Eglov Isl.
Sarcophaga sexpunctata Fabricius – Eglov Isl.
Sarcophaga similis Meade – Kizhi Isl., Podyelniki
Sarcophaga socrus Rondani – Sennaya Guba
Sarcophaga subulata Pandellé – Podyelniki
Sarcophaga uliginosa Kramer – Eglov Isl., Vikshezero
Sarcophaga vagans Meigen – Oyatevschina
Sarcophaga variegata Scopoli – Eglov Isl., Kizhi Isl., Oyatevschina, Rogachev Isl., Vikshezero, Vorobyi

Tachinidae
? Paratryphera barbatula Rondani – Podyelniki
? Winthemia quadripustulata Fabricius – Turastamozero
Bactromyia aurulenta Meigen – Podyelniki
Aplomya confinis Fallén – Turastamozero
Allophorocera ferruginea Meigen – Nizhneje Myagrozero
Exorista larvarum L. – Podyelniki
Medina collaris Fallén – Podyelniki
Medina multispina Herting – Podyelniki
Medina separata Meigen – Podyelniki
? Actia pilipennis Fallén – Podyelniki, Vorobyi
Ceromyia silacea Meigen – Eglov Isl., Lipovitsy, Podyelniki, Polya, Turastamozero, Uzkaya Salma
Tachina fera L. – Nizhneje Myagrozero, Oyatevschina
Tachina grossa L. – Turastamozero
Novickia marklini Zetterstedt – Eglov Isl., Nizhneje Myagrozero, Podyelniki, Rogachev Isl., Turastamozero
Ernestia rudis Fallén – Eglov Isl.
Eurithia connivens Zetterstedt – Podyelniki
Halidaya aurea Egger – Podyelniki
Eriothrix rufomaculatus DeGeer – Vorobyi
Voria ruralis Fallén – Eglov Isl.
Thelaira nigripes Fabricius – Nizhneje Myagrozero, Podyelniki, Vegoruksy
? Thelaira solivaga Harris – Oyatevschina
Subclytia rotundiventris Fallén – Turastamozero
Gymnosoma nudifrons Herting – Paleostrov Isl.
Phasia aurulans Meigen – Vorobyi
Phasia hemiptera Fabricius – Klimenicy
? Phasia mesnili Draber-Monko – Vikshezero
Lophosia fasciata Meigen – Kurgenitsy, Lipovitsy
Cylindromyia brassicaria Fabricius – Vorobyi
Cylindromyia interrupta Meigen – Eglov Isl., Kurgenitsy, Podyelniki, Verkhnee Myagrozero.
REFERENCES

3.7 Localities in Zaonezhye area used in species lists of vascular plants, bryophytes, lichens, fungi and insects, and their toponyms

Alexei V. Kravchenko*, Pertti Uotila** and Jevgeni Jakovlev***

* Forest Research Institute of the Karelian Research Center of Russian Academy of Sciences. Petrozavodsk, 11 Pushkinskaya St., RU-185910 Petrozavodsk, Karelia, Russia
** Botany Unit, Finnish Museum of natural History, P.O.Box 7, FI-00014 University of Helsinki, Finland
***The Finnish Enviroment Institute (SYKE) Mechelininkatu 34a. P.O.Box 140, FIN-00251 Helsinki, Finland
#Corresponding author
E-mail: alex.kravchen@mail.ru

The accuracy of collection localities given on the labels of herbarium specimens and insect collections, as well in the literature, is very variable. In most cases the geographical names have been taken from maps in use during particular historical periods. Several place names have changed over time. All found localities, where species have been recorded in Zaonezhye area, are included in the table, with their known toponyms. At present, many villages in the table have been abandoned.

All place names indicated on old labels could not be found from Mullonen et al. (2013) or other sources (printed papers, maps, internet sources), and such names are excluded from the table. In some cases two or more places have the same name, and they are excluded as well.

Coordinates (if not otherwise mentioned) indicate the center of the settlement, lake, island, peninsula, etc. The actual collection place is located within the locality given and usually well-marked on the maps or in its more or less immediate vicinity (labels often include words like “near, “close”, “next to”, etc.).

<table>
<thead>
<tr>
<th>English (shortened in parentheses)</th>
<th>Russian name*</th>
<th>Spelling variants and Finnish names</th>
<th>Type of the place</th>
<th>Decimal coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azhepnavolok</td>
<td>Ажепнаволок</td>
<td>Azhebnavolok Asheb Ажеп Лжепнаволок</td>
<td>Peninsula</td>
<td>62.628826 N; 34.962074 E</td>
</tr>
<tr>
<td>Russian Name</td>
<td>English Name</td>
<td>Type</td>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>Bolnichnyi</td>
<td>Больничный</td>
<td>Village</td>
<td>62.251903 N; 35.039493 E</td>
<td></td>
</tr>
<tr>
<td>Bolshoi Klimenetsky</td>
<td>Большой Клименецкий</td>
<td>Island</td>
<td>61.969199 N; 35.261581 E</td>
<td></td>
</tr>
<tr>
<td>Bolshoi Klimetskii (B. Klim., Bol. Klim.)</td>
<td>Большой Клименецкий</td>
<td>Island</td>
<td>61.963382 N; 35.129745 E</td>
<td></td>
</tr>
<tr>
<td>Boyarstchina</td>
<td>Боярщина</td>
<td>Village</td>
<td>62.070505 N; 35.197037 E</td>
<td></td>
</tr>
<tr>
<td>Bukolnikovskiy</td>
<td>Букольниковский</td>
<td>Island</td>
<td>62.006502 N; 35.199783 E</td>
<td></td>
</tr>
<tr>
<td>Butenevo</td>
<td>Бутенево</td>
<td>Village</td>
<td>62.532975 N; 35.363165 E</td>
<td></td>
</tr>
<tr>
<td>Chelzero</td>
<td>Челозеро</td>
<td>Lake</td>
<td>62.416746 N; 34.983793 E</td>
<td></td>
</tr>
<tr>
<td>Dianova Gora</td>
<td>Дианова Гора</td>
<td>Village</td>
<td>62.632001 N; 34.648367 E</td>
<td></td>
</tr>
<tr>
<td>Dolgiy</td>
<td>Долгий</td>
<td>Island</td>
<td>62.111704 N; 35.267761 E</td>
<td></td>
</tr>
<tr>
<td>Eglov</td>
<td>Еглов</td>
<td>Island</td>
<td>62.134774 N; 35.164249 E</td>
<td></td>
</tr>
<tr>
<td>Ernitskiy</td>
<td>Ерницкий</td>
<td>Island</td>
<td>61.989196 N; 35.168057 E</td>
<td></td>
</tr>
<tr>
<td>Fedotovo</td>
<td>Федотово</td>
<td>Village</td>
<td>62.660191 N; 34.682274 E</td>
<td></td>
</tr>
<tr>
<td>Fomino</td>
<td>Фомино</td>
<td>Village</td>
<td>62.561743 N; 34.887663 E</td>
<td></td>
</tr>
<tr>
<td>Garnitsy (Pervye & Vtorye)</td>
<td>Гарницы (Первые и Вторые)</td>
<td>Twin village on</td>
<td>61.978328 N; 35.213344 E</td>
<td></td>
</tr>
<tr>
<td>Gabostrov</td>
<td>Габостров</td>
<td>Island</td>
<td>62.483694 N; 34.557043 E</td>
<td></td>
</tr>
<tr>
<td>Gizhzero</td>
<td>Гижзеро</td>
<td>Lake</td>
<td>62.469416 N; 35.084604 E</td>
<td></td>
</tr>
<tr>
<td>Gryz</td>
<td>Грыз</td>
<td>Island</td>
<td>62.022556 N; 35.222379 E</td>
<td></td>
</tr>
<tr>
<td>Gryznavolok</td>
<td>Грызнаволок</td>
<td>Cape on B. Klim.</td>
<td>62.022556 N; 35.222379 E</td>
<td></td>
</tr>
<tr>
<td>Izbushechnyi</td>
<td>Избушечный</td>
<td>Island</td>
<td>62.111657 N; 34.954397 E</td>
<td></td>
</tr>
<tr>
<td>Kainos</td>
<td>Кайнос</td>
<td>Island</td>
<td>62.584217 N; 35.405647 E</td>
<td></td>
</tr>
<tr>
<td>Kalgostrov</td>
<td>Калгостров</td>
<td>Island</td>
<td>62.004324 N; 35.128652 E</td>
<td></td>
</tr>
<tr>
<td>Kanev</td>
<td>Канев</td>
<td>Island</td>
<td>62.010591 N; 35.215688 E</td>
<td></td>
</tr>
<tr>
<td>Karasozero</td>
<td>Карасозеро</td>
<td>Village and lake</td>
<td>62.407075 N; 34.890936 E</td>
<td></td>
</tr>
<tr>
<td>Kaskoselga</td>
<td>Каскосельга</td>
<td>Village</td>
<td>62.246321 N; 34.467176 E</td>
<td></td>
</tr>
<tr>
<td>Kazhma</td>
<td>Кажма</td>
<td>Village</td>
<td>62.550795 N; 34.839851 E</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Name</td>
<td>Description</td>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Kizhi</td>
<td>Кижи</td>
<td>Island</td>
<td>62.084754 N; 35.213453 E</td>
<td></td>
</tr>
<tr>
<td>Khvost</td>
<td>Хвост</td>
<td>Island</td>
<td>62.149371 N; 35.152435 E</td>
<td></td>
</tr>
<tr>
<td>Klim Nos</td>
<td>Клим Нос</td>
<td>Peninsula</td>
<td>62.552257 N; 35.343228 E</td>
<td></td>
</tr>
<tr>
<td>Klimenitsy</td>
<td>Клименицы</td>
<td>Village on B. Klim. (former monastery)</td>
<td>61.849696 N; 35.180698 E</td>
<td></td>
</tr>
<tr>
<td>Kopanetz</td>
<td>Копанец</td>
<td>Lake</td>
<td>62.033892 N; 35.124841 E</td>
<td></td>
</tr>
<tr>
<td>Korbozero</td>
<td>Корбозеро</td>
<td>Lake</td>
<td>62.206441 N; 35.287818 E</td>
<td></td>
</tr>
<tr>
<td>Kossela</td>
<td>Косельга</td>
<td>Village on B. Klim.</td>
<td>62.003596 N; 35.321121 E</td>
<td></td>
</tr>
<tr>
<td>Kosmozero</td>
<td>Космозеро</td>
<td>Lake</td>
<td>62.447286 N; 34.941034 E</td>
<td></td>
</tr>
<tr>
<td>Kosmozero</td>
<td>Космозеро</td>
<td>Village</td>
<td>62.334634 N; 35.057163 E</td>
<td></td>
</tr>
<tr>
<td>Krokhino</td>
<td>Крохино</td>
<td>Village</td>
<td>62.363944 N; 35.270308 E</td>
<td></td>
</tr>
<tr>
<td>Kuivakha</td>
<td>Куйвахда</td>
<td>Island</td>
<td>61.959308 N; 35.170975 E</td>
<td></td>
</tr>
<tr>
<td>Kurgenitsy</td>
<td>Кургеницы</td>
<td>Village on B. Klim.</td>
<td>62.071655 N; 35.286457 E</td>
<td></td>
</tr>
<tr>
<td>Kuzaranda</td>
<td>Кузаранда</td>
<td>Village</td>
<td>62.374627 N; 35.525054 E</td>
<td></td>
</tr>
<tr>
<td>Ladmozero</td>
<td>Ладмоzero</td>
<td>Lake</td>
<td>62.536845 N; 34.683295 E</td>
<td></td>
</tr>
<tr>
<td>Ladmozero</td>
<td>Ладмозеро</td>
<td>Village</td>
<td>62.56553 N; 34.664413 E</td>
<td></td>
</tr>
<tr>
<td>Lambasruchey</td>
<td>Ламбасручей</td>
<td>Village</td>
<td>62.287764 N; 34.876731 E</td>
<td></td>
</tr>
<tr>
<td>Lambinskie</td>
<td>Ламбинские</td>
<td>Isles</td>
<td>61.957767 N; 35.09107 E</td>
<td></td>
</tr>
<tr>
<td>Lelikozero</td>
<td>Леликоzeros</td>
<td>Village and lake</td>
<td>62.303488 N; 34.93185 E</td>
<td></td>
</tr>
<tr>
<td>Lichkov</td>
<td>Личков</td>
<td></td>
<td>See: Lyudskoy</td>
<td></td>
</tr>
<tr>
<td>Lizhma</td>
<td>Лижма</td>
<td>Village</td>
<td>62.378977 N; 34.515067 E</td>
<td></td>
</tr>
<tr>
<td>Lipovitsy</td>
<td>Липовицы</td>
<td>Village</td>
<td>62.115029 N; 35.060123 E</td>
<td></td>
</tr>
<tr>
<td>Longasy</td>
<td>Лонгасы</td>
<td>Village on B. Klim.</td>
<td>61.988603 N; 35.210739 E</td>
<td></td>
</tr>
<tr>
<td>Lyudskoi</td>
<td>Людской</td>
<td>Village on B. Klim.</td>
<td>61.965502 N; 35.175376 E</td>
<td></td>
</tr>
<tr>
<td>Lukova</td>
<td>Лукова</td>
<td>Bay on B. Klim.</td>
<td>61.913642 N; 35.188769 E</td>
<td></td>
</tr>
<tr>
<td>Medvedevo</td>
<td>Медведево</td>
<td>Village</td>
<td>62.532611 N; 34.852555 E</td>
<td></td>
</tr>
<tr>
<td>Medvezhia Gora</td>
<td>Медвежья Гора</td>
<td>Hill on B. Klim.</td>
<td>61.891034 N; 35.217605 E</td>
<td></td>
</tr>
<tr>
<td>Megostrov</td>
<td>Мегостров</td>
<td>Island</td>
<td>62.563731 N; 35.42894 E</td>
<td></td>
</tr>
<tr>
<td>Meloiguba</td>
<td>Мелойгуба</td>
<td>Village and bay</td>
<td>62.512201 N; 34.588486 E</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Surname</td>
<td>Location</td>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Mizhostrov</td>
<td>Мижостров</td>
<td>Village and island</td>
<td>62.289042 N; 34.831215 E</td>
<td></td>
</tr>
<tr>
<td>Motalovo</td>
<td>Моталово</td>
<td>Village on B. Klim.</td>
<td>61.974821 N; 35.237151 E</td>
<td></td>
</tr>
<tr>
<td>Myal’</td>
<td>Миль</td>
<td>Island</td>
<td>62.000035 N; 35.147269 E</td>
<td></td>
</tr>
<tr>
<td>Mysh’</td>
<td>Мыши</td>
<td>Isles</td>
<td>62.013107 N; 35.080665 E</td>
<td></td>
</tr>
<tr>
<td>Nikonova Gora</td>
<td>Никонова Гора</td>
<td>Village</td>
<td>62.573608 N; 34.824744 E</td>
<td></td>
</tr>
<tr>
<td>Nizhnee Myagrozero</td>
<td>Ниже Мягозеро</td>
<td>Village and lake</td>
<td>62.512977 N; 34.769135 E</td>
<td></td>
</tr>
<tr>
<td>Okatovstchina</td>
<td>Окатовщина</td>
<td>Village</td>
<td>62.586729 N; 34.921611 E</td>
<td></td>
</tr>
<tr>
<td>Orozh</td>
<td>Орож</td>
<td>Island</td>
<td>61.985826 N; 35.200828 E</td>
<td></td>
</tr>
<tr>
<td>Oyatevstchina</td>
<td>Оятиевщина</td>
<td>Village</td>
<td>62.082301 N; 35.180677 E</td>
<td></td>
</tr>
<tr>
<td>Padmozero</td>
<td>Падмозеро</td>
<td>Lake</td>
<td>62.493025 N; 35.170732 E</td>
<td></td>
</tr>
<tr>
<td>Paleostov</td>
<td>Палеостров</td>
<td>Island</td>
<td>62.565773 N; 35.252533 E</td>
<td></td>
</tr>
<tr>
<td>Petry</td>
<td>Петры</td>
<td>Village on B. Klim.</td>
<td>62.026242 N; 35.247021 E</td>
<td></td>
</tr>
<tr>
<td>Pod’elniki</td>
<td>Подъельники</td>
<td>Village</td>
<td>62.110299 N; 35.169004 E</td>
<td></td>
</tr>
<tr>
<td>Polya</td>
<td>Поля</td>
<td>Village</td>
<td>62.304761 N; 35.299123 E</td>
<td></td>
</tr>
<tr>
<td>Pryalichinskaya</td>
<td>Пряличинская</td>
<td>Village</td>
<td>62.492318 N; 35.283284 E</td>
<td></td>
</tr>
<tr>
<td>Putkozero</td>
<td>Путкоzero</td>
<td>Lake</td>
<td>62.497105 N; 35.090828 E</td>
<td></td>
</tr>
<tr>
<td>Radkolie Radkolye</td>
<td>Радколье</td>
<td>Cape on B. Lelik.</td>
<td>61.943054 N; 35.098279 E</td>
<td></td>
</tr>
<tr>
<td>Radkolie</td>
<td>Радколье</td>
<td>Island</td>
<td>61.995407 N; 35.1872 E</td>
<td></td>
</tr>
<tr>
<td>Rechka</td>
<td>Речка</td>
<td>Village</td>
<td>62.095981 N; 35.178617 E</td>
<td></td>
</tr>
<tr>
<td>Rechnoy</td>
<td>Речной</td>
<td>Island</td>
<td>62.590887 N; 35.211506 E</td>
<td></td>
</tr>
<tr>
<td>Regimatka</td>
<td>Региматка</td>
<td>Village</td>
<td>62.515407 N; 34.887147 E</td>
<td></td>
</tr>
<tr>
<td>Rogachev</td>
<td>Рогачев</td>
<td>Island</td>
<td>62.12555 N; 35.185621 E</td>
<td></td>
</tr>
<tr>
<td>Rogostrov</td>
<td>Рогостров</td>
<td>Island</td>
<td>62.002221 N; 35.185387 E</td>
<td></td>
</tr>
<tr>
<td>Rugzero</td>
<td>Ругозеро</td>
<td>Ruuhijärvi</td>
<td>62.15173 N; 34.94471 E</td>
<td></td>
</tr>
<tr>
<td>Sennaya Guba</td>
<td>Сенная Губа</td>
<td>Village on B. Klim. and bay</td>
<td>61.995891 N; 35.208143 E</td>
<td></td>
</tr>
<tr>
<td>Seredka</td>
<td>Середка</td>
<td>Village on B. Klim.</td>
<td>62.044124 N; 35.245565 E</td>
<td></td>
</tr>
<tr>
<td>Severnyi Mushyi</td>
<td>Северный Мышьий</td>
<td>Island</td>
<td>62.015097 N; 35.078784 E</td>
<td></td>
</tr>
<tr>
<td>Severnyi Sokoliy</td>
<td>Северный Соколий</td>
<td>Island</td>
<td>62.371764 N; 34.749412 E</td>
<td></td>
</tr>
<tr>
<td>Place</td>
<td>Coordinates</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiltya</td>
<td>Шильта</td>
<td>Village 62.411273 N; 35.174178 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunevskiy</td>
<td>Шуневский</td>
<td>Island 62.139556 N; 35.21371 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shun'ga Shunga</td>
<td>Шуньга Шунга</td>
<td>Village 62.594115 N; 34.93187 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schsuchia</td>
<td>Щучья</td>
<td>Bay on B. Klim. 61.856936 N; 35.207616 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirovka</td>
<td>Спировка</td>
<td>Village 62.437613 N; 35.133151 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sypun Gora</td>
<td>Сыпун-Гора</td>
<td>Hill 62.572901 N; 34.696694 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tambitsy</td>
<td>Тамбицы</td>
<td>Village 62.229184 N; 35.55747 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telpozero</td>
<td>Тельпозеро</td>
<td>Village and lake 62.613468 N; 34.885905 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telyatnikovo</td>
<td>Телятниково</td>
<td>Village 62.047867 N; 35.20233 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terekhovo</td>
<td>Терехово</td>
<td>Village 62.318605 N; 35.065858 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipintsy</td>
<td>Типиницы</td>
<td>Village 62.189107 N; 35.414819 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolvuya</td>
<td>Толвуя</td>
<td>Village 62.51028 N; 35.285149 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolvuyksiy Bor</td>
<td>Толвуйский Бор</td>
<td>Village 62.503503 N; 35.241239 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolstyi Navolok</td>
<td>Толстый наволок</td>
<td>Cape 62.298311 N; 35.575323 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turastamozero</td>
<td>Турастамозеро</td>
<td>Turastam Village and lake 62.552306 N; 34.714546 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitsa</td>
<td>Уница</td>
<td>Village 62.597279 N; 34.460144 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitskaya Guba</td>
<td>Уницкая Губа</td>
<td>Bay of Lake Onega 62.486782 N; 34.583397 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ust'-Yandoma</td>
<td>Усть-Яндома</td>
<td>Village 62.173124 N; 35.272083 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uzkie Salmy</td>
<td>Узкие Салмы</td>
<td>Uzkaya Salma Village 62.135474 N; 34.930992 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uzkie</td>
<td>Узкие</td>
<td>Village 62.437475 N; 34.958559 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vablok</td>
<td>Ваблок</td>
<td>Island 62.575909 N; 35.410805 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanchozero</td>
<td>Ванчозеро</td>
<td>Village 62.529951 N; 34.800377 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varnavolok</td>
<td>Варнаволок</td>
<td>Cape 62.162788 N; 35.462198 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegoruksa Vegoruksy</td>
<td>Вегоруksа Вегоруksы</td>
<td>Village 62.218831 N; 34.883711 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vekhkozero</td>
<td>Вехкозеро</td>
<td>Lake 62.136668 N; 35.115797 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velikaya Guba</td>
<td>Великая Губа</td>
<td>Village and bay 62.251825 N; 35.068103 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velikaya Niva</td>
<td>Velikaja Niva Village and lake</td>
<td>62.362816 N; 35.223443 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verkhnee Myagrozero</td>
<td>Village</td>
<td>62.482016 N; 34.819946 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertilovo</td>
<td>Village</td>
<td>62.00665 N; 35.181214 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voinavolok</td>
<td>Village and peninsula</td>
<td>61.97791 N; 35.33571 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volkostrov</td>
<td>Island</td>
<td>62.112554 N; 35.207836 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voroh’i Vorobyi</td>
<td>Village on B. Klim.</td>
<td>62.056191 N; 35.251095 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voroninskoe</td>
<td>Village</td>
<td>62.471389 N; 35.205934 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zaselezhye</td>
<td>Village</td>
<td>62.519262 N; 35.366265 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimnyaya</td>
<td>Mountain</td>
<td>62.386252 N; 35.052639 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zharnikovo</td>
<td>Village</td>
<td>62.056789 N; 35.207882 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zubovo</td>
<td>Village</td>
<td>62.103317 N; 35.177155 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yam</td>
<td>Island</td>
<td>61.992243 N; 35.1928 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuzhnyi Oleniy (Yu. Oleniy)</td>
<td>Island</td>
<td>62.045831 N; 35.363579 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abandoned villages in Zaonezhye Peninsula (Photo Boris Rayevsky).
Karelian and Finnish botanists and entomologists on the Ekolog ship. July 2004. In front: Alexei Kravchenko (left) and Pertti Uotila (right); behind, left to right: Andrei Humala, Alexei Polevoi, Jevgeni Jakovlev (Photo Tapio Lindholm).
Karelian botanists on the shore of Lake Onega. Losyi islands, July 2004. Left to right: Elena Gnatyuk, Alexei Kravchenko and Oleg Kuznetsov (Photo Tapio Lindholm).
Aconitum septentrionale – an eastern («Siberian») species which can be found from Zaonezhye close to the western limit of its distribution area (Photo Tapio Lindholm).
Polemonium caeruleum in blossom on meadows along the Kuzaranda shore of Lake Onega (Photo Tapio Lindholm).
Luxuriant shore meadow of *Allium schoenoprasum* and *Melampirum nemorosum* on the shore of Lukova Bay (Photo Pertti Uotila).
Rauno Ruuhijärvi (in front) and Mikko Piiranen (behind) on the Kuzaranda shore of Lake Onega. The adults of Black-veined White butterfly (*Aporia crataegi*) are very abundant on mineralized soils (Photo Pertti Uotila).
Ecolog, the ship of the Karelian Research Center of Russian Academy of Sciences (Photo Tapio Lindholm).
Sunset in Vegoruksa Bay of Lake Onega (Photo Boris Rayevsky).
Tapio Lindholm (Photo Jevgeni Jakovlev).
Olli Manninen (left) and Alexei Kravchenko (right) found a rare fungus, *Piloporia sajanensis* in herb-rich spruce forest in the vicinity of Uzkie Salmy (Photo Jevgeni Jakovlev).
Andrei Humala (left) and Alexei Polevai (right) in herb-rich spruce forest with Aconitum septentrionale (Photo Jevgeni Jakovlev).
Abstract
Zaonezhye Peninsula (Заонежский полуостров in Russian transcription) is situated on the northwestern coast of Lake Onega in the Republic of Karelia, Russia. The territory of Zaonezhye is unique in that it contains nearly every type of terrain and unconsolidated sediment known in the vast expanses of northwest Russia. It is also eastern part of Fennoscandian shield. It is characterized by a high diversity of basic limestone and carbonate rocks that determine the fertility of local soils as well as the unique diversity of habitats, flora and fauna. Numerous rare calciphile plant and lichen species are found here, as well as rich, eutrophic wetlands. Long-term farming and animal husbandry have led to a large number of grassland communities in the area. As a result, a mosaic structure of diverse habitats has evolved here. Europe’s second largest lake, Lake Onega, with its clear and deep waters also affect the local climate, making it milder.

This report provides for the first time detailed species lists of vascular plants, bryophytes, lichens, wood-growing fungi and insects covering the entire Zaonezhye Peninsula, Kizhi archipelago and other adjacent islands. The most important sites for protection were observed, and six new nature monuments in the southern and southeastern parts of Zaonezhye Peninsula are recommended to be established.

Keywords
geology, palaeogeography, landscapes, forest, mires, meadows, vascular plants, bryophytes, lichens, wood-growing fungi, insects, biodiversity, nature conservation, Zaonezhye Peninsula, Kizhi archipelago, Onega Lake, Republic of Karelia
Издатель	Институт окружающей среды Финляндии	Время публикации март 2015
Автор(ы) | Тапио Линдхольм, Евгений Яковлев и Алексей Кравченко (ред.) |
Название публикации | Biogeography, landscapes, ecosystems and species of Zaonezhye Peninsula, in Lake Onega, Russian Karelia (Биогеография, ландшафты, экосистемы и виды Заонежского полуострова Онежского озера, республика Карелия) |
Название и номер серии публикаций | Доклады Института Окружающей Среды Финляндии 40 / 2014 |
Тематика публикации |
Часты публикации/ другие публикации, вышедшие в рамках этого же проекта | Настоящее издание доступно в Интернете по адресу: www.syke.fi/publications | helda.helsinki.fi/syke | www.bpan.fi

Резюме
Заонежье — Заонежский полуостров, занимающий срединную часть северного берега Онежского озера, и примыкающие к нему многочисленные острова, располагается в Республике Карелия, на восточной окраине Скандинавского щита. Это уникальная природная территория, где можно найти почти все типы рельефа и рыхлых отложений четвертичного возраста, развитых на Северо-Западе России. Выходы основных пород с высоким содержанием углеродистого вещества обуславливают высокое плодородие местных почв, и как следствие — исключительно богатую природу с высоким уровнем разнообразия флоры и фауны. В лесах и на лугах встречаются многие редкие виды растений и лишайников, приуроченные к кальцефильным местообитаниям. Очень богата флора евтрофных травяных болот. Близость Онеги — чистого глубоководного озера, второго по величине в Европе, оказывает благотворное влияние на климат. Благодаря богатству почв и сравнительно мягкому климату, территория Заонежье давно освоена человеком, и здесь широко распространены луговые сообщества, мозаично чередующиеся с различными типами лесных и болотных местообитаний.

В данной публикации впервые приводятся подробные списки видов сосудистых растений, мхов, лишайников, древообитающих грибов и насекомых, охватывающие всю территорию Заонежского полуострова, Кижского архипелага и других прилегающих островов.

Определены имеющие наибольшую природоохранную ценность участки на юге и юго-востоке полуострова, где рекомендуется создать шесть новых памятников природы.

Книга содержит следующие разделы, характеризующие природу Заонежского полуострова: 1. Геология и география: 1.1. Геологическое строение, 1.2. Геоморфология и четвертичные отложения, 1.3. Гидрогеографическая сеть, 1.4. Почвенный покров, 1.5. Палеогеография, 1.6. Существующие и планируемые особо охраняемые территории; 2. Ландшафты, экосистемы и биогеография: 2.1. Современные ландшафты, 2.2. Ландшафтная сеть, 2.3. Лесной покров, 2.4. Структура насаждений, 2.5. Болота, 2.6. Луга; 3. Флора и фауна: 3.1. Высшие сосудистые растения, 3.2. Мхи, 3.3 Лишайники (список видов), 3.4. Древообитающие грибы и насекомые, и 3.7. Указатель географических названий и топонимов для упоминаемых в списках видов мест находок высших сосудистых растений, мхи, лишайников, грибов и насекомых.

Ключевые слова
geология, палеогеография, ландшафты, лес, болота, луга, высшие сосудистые растения, мхи, лишайники, древообитающие грибы и насекомые, биоразнообразие, охрана природы, Заонежский полуостров, Кижский архипелаг, Ореношское озеро, республика Карелия.

Финансирующая организация/ заказчик
Совет Министров стран Северной Европы; Министерства окружающей среды Финляндии, Норвегии и Швеции; Министерства Иностранных дел Финляндии, Норвегии и Швеции, Дирекция ООПТ регионального значения республики Карелия.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество страниц</td>
<td>360</td>
<td>Язык</td>
<td>Английский</td>
</tr>
<tr>
<td>Ограниченная Открыта печать</td>
<td>Цена (вкл. НДС 8 %)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Продавец/ дистрибьютор публикации | Институт Окружающей Среды Финляндии (SYKE), P.O. Box 140, FI-00251 Helsinki, Finland, Email: neuvonta.syke@ymparisto.fi |

Финансирование публикации | Институт Окружающей Среды Финляндии (SYKE), P.O. Box 140, FI-00251 Helsinki, Finland Finnish Environment Institute (SYKE), P.O. Box 140, FI-00251 Helsinki, Finland Телефон: + 358 0295 251 000 |

Место и год издания | Juvenes Print, 2015 |
Tiivistelmä

Tämä raportti sisältää runsaasti uutta tietoa putkilokasveista, sammalista, jäkäläistä, käväistä ja hyönteisistä Äänisenniemeltä ja siihen liittyviä alueita. Suojelun kannalta tärkeimpiä alueita inventoitiin ja kuutta uutta suojelualuetta ehdotetaan perustettavaksi Äänisenniemien eteläosien.

Asiasanat
- geologia
- muinaismaantiede
- metsät
- suot
- niityt
- putkilokasvit
- sammalat
- jäkälät
- käävät
- hyönteiset
- luonnon monimutkaisuus
- Äänisenniemi
- Kizhin saaristo
- Ääninen
- Karjalan tasavalta

Te Toblom

Tapio Lindholm, Jevgeni Jakovlev ja Alexei Kravchenko (toim.)

Julkaisusarjan nimi ja numero

Suomen ympäristökeskuksen raportteja 40/2014

Julkaisun osat/

Julkaisu on saatavana internetistä:
- www.syke.fi/julkaisut
- helda.helsinki.fi/syke
- www.bpan.fi
Sammandrag

I denna publikation finns de första detaljerade listor över arter av kärlväxter, mossor, lavar, svampar och insekt- eller hela territoriet i Zaonezhie halvön, Kizhi skärgård och andra närliggande öar.

Inventeringen omfattar de största bevarandevärda områden av södra och sydöstra halvön, där det rekommenderas att grunda sex nya naturskyddsområden.

Nyckelord
geologi, paleogeografi, landskapen, skogar, myrar, ängar, kärlväxter, mossor, lavar, tickor, insekter, naturens mångfald, Naturskydd, Zaonezhie halvön, Kizhi skärgård, andra närbelägna öar.

Finansiär/utpådragsgivare
Nordiska ministerrådet, miljö- och utrikesministerierna i Finland, Norge och Sverige, Directorate of regional protected areas of the Republic of Karelia

ISBN
978-952-11-4404-2 (pbk.)
978-952-11-4405-9 (PDF)
1796-1718 (print)
1796-1726 (online)

Pris (inneh. moms 8 %)
Beställningar/distribution
Finlands miljöcentral (SYKE), PB 140, 00251 Helsingfors, Epost: neuvonta.syke@ymparisto.fi

Förläggare
Finlands miljöcentral (SYKE), PB 140, 00251 Helsingfors Tel. 0295 251 000

Trycker/tryckningsår
Juvenes Print, 2015
The BPAN project promotes and supports the establishment of a representative network of protected areas in the Barents Region. Protected area networks are an important tool for biodiversity conservation as well as climate change adaptation and mitigation. A representative network of protected areas safeguards biodiversity, supports natural ecosystems and maintains ecosystem services.

The BPAN project started in 2011 as an initiative of the nature protection subgroup of the BEAC Working Group on Environment. The project has been implemented by nature conservation authorities, scientific institutes and nature conservation NGOs in Finland, Sweden, Norway and Northwest Russia.

Within the project, five regional pilot projects have been implemented in high conservation value areas of Northwest Russia. All of these areas are under threat from human activities. In Karelia, the pilot project has been implemented on Zaonezhye Peninsula.

Zaonezhye Peninsula has a distinctive and diverse natural heritage, which has been recognised for a long time. Although its unique habitats are included in regional nature conservation plans, documentation necessary for the establishment of a protected area has been lacking. At the same time high conservation value forests have been under threat from logging.

This publication gives an overview of Zaonezhye Peninsula. It discusses geology, hydrology and landscapes. It also describes present-day species of vascular plants, bryophytes, lichens, wood-growing fungi and insects on the Zaonezhye Peninsula and its adjacent islands, as well as earlier records from the peninsula since the end of the 19th century. We hope that the information on these pages will promote the protection of hundreds of red-listed species and valuable habitats in the Zaonezhye area.

ISBN 978-952-11-4405-9 (PDF)
ISSN 1796-1718 (print)
ISSN 1796-1726 (online)