А. Н. Лунгу

ГИППАРИОНОВАЯ
ФАУНА
СРЕДНЕГО
САРМАТА
МОЛДАВИИ

(ХИЩНЫЕ МЛЕКОПИТАЮЩИЕ)

ИЗДАТЕЛЬСТВО «ЛЯТИНЦА»
КИШИНЕВ * 1978
ПРЕДИСЛОВИЕ

Орогенетические движения в Карпатах и поднятия его-западной части Русской платформы в верхнем миоцене привели к обмелению, а затем к общей регрессии сарматского бассейна на территории Молдавии. В связи с этим в конце среднесарматского времени территория Днестровско-Прутского междуречья до широты г. Бендеры предоставила особо покрытую равнинной растительностью слабо речевую равнину. Природные условия здесь благоприятствовали широкому расселению и развитию богатой фауны наземных позвоночных, известной под названием сарматской.

Динообразные скопления ее остатков обнаружены в центральной части республики (среди Браил, Молка Милевки, Када, Верниди, Ялушика, Бугор, Исаково и др.). Они встречаются в морских, аридальных, дельтовых, речных и озерных фашиях, приуроченных к различным стратиграфическим уровням верхней части среднесарматского разреза. В указанных местонахождениях обнаружен богатый и интересный материал, относящийся к древнейшей гиппархоновой фауне, известной ранее на территории СССР. Он, по всей видимости, может объяснить некоторые открытия вопросов, имеющих важное значение для геологического исследования отделений сарматской фауны, отражений ее влияния на развитие фауны и их последующие изменения в отложениях верхнего миоцена.

В предложенной работе на основе новых данных рассматриваются тафуны местонахождений и особенности систематического состава среднесарматской гиппаксионовой фауны Молдавии и впервые подробно описываются остатки хищных млекопитающих.

В последние годы, как и в настоящее время, хищники были представлены многочисленными формами, которые характеризовались большим разнообразием экологических особенностей и широким ареалом распространения. Изучение ископаемых остатков хищников очень важно для выяснения эволюции, формирования и расселения нынешней фауны, реконструкции палеогеографии, палеографии сушки и др.

Но, как отмечает К.К. Флеров (1982), среди хищных млекопитающих имеются много форм, связанных не столько с определенной природной средой, сколько с объектами питания, обычными в разных ландшафтах. Такие формы могут жить в самых разнообразных условиях, специфически не припоспособленные к незначительным изменениям обстановок.

Вполне понятно, что по млекопитающим, особенно хищным, обитающим в лесных, саванных, степных, пустынных и других ландшафтах, трудно восстановить природу обстановку геологического прошлого определенных местностей. Но они имеют существенное значение для выяснения эволюции и расселения нынешней фауны, широких экологических условий, обитаемых в различных ландшафто-климатических условиях, а также для стратиграфического расселения и корреляции континентальных отложений.

В монографии описывается 13 форм хищных млекопитающих (в том числе два новых вида), впервые обнаруженных в позднепалеозойской фауне на территории нашей страны. На основе изучения палеонтологического материала и анализа литературных данных предлагается попытка ревизии и перераспределения отдельных форм, выявлены непостоянные особенности по поводу систематического положения, экологии и стратиграфического значения отдельных представителей отряда Carnivora, а также отмечены отличительные особенности систематического состава среднесарматской фауны хищных млекопитающих. Исследованный палеонтологический материал имеет хорошую сохранность, но фрагментирован и представлен преимущественно изолированными зубами, обломками черепов, ножными чешуйками и отдельными костями конечностей.
Окраска сарматского яруса широко распространена на территории регионов. Они представлены тремя подъярусами: нижним (водорослевым), средним (десертным) и верхним (ксерофитным). (Рис. 1.) Детальное стратиграфическое разложение сарматских отложений Молдавии дано в работах А.И. Замовина (1948, 1960, 1961), В.В. Рожки (1964, 1967) и А.А. Луком (1966). Нижний ярус. Нижнесарматское отложение широко представлено в регионе на значительной площади на его, прилегающей к Вулкану и Черному морю. Это различная высота (субстраты, дренирующие, угольные и отложения), диаметр и толщина, грунты, пески и песчанцы, представляющие собой морские мелководные образования. Залежь нижнесарматского отложения на большей территории на фоне высоких озер в сочетании с переувлажненными морскими образованиями. Мощность их обычно колеблется от 20 до 50 м и возрастает под полосой среднесарматских рифов до 100 м. В остальных областях нижнесарматское отложение прослеживается о севера на восток до перекрестия верхнего яруса. По данным В.В. Рожки (1967), нижнесарматское отложение по батиметрии мелководий подразделяется на два горизонта.

Нижний горизонт установлен северовосточной частью по восточным районам. К этому горизонту В.В. Рожки относит морские отложения мелководья (до 35 м), содержащие раковинные морепуттерии, Evritria trigonala Sek., Cardium ruthenianum Hih., Mastra eichwalti Lask., Abra reflexa (Zechw.), Cerithium rubiginosum Eichw., и др. Нижний горизонт на большей части территории Молдавии постепенно сменяется верхним горизонтом и лишь на северо-востоке верхний часть его развит.

К востоку от полосы субмеридиональных рифов в южной части Предгорийского прогиба нижняя часть верхнего горизонта также представлена мелководными моллюсками, имеющими в прошлом континентальные, содержащими раковину Evritria eichwalti Eichw., Cardium eichwalti Lask., Gibbula angulata (Eichw.), Cardium pleonatum Eichw., Paphia vitellina (Orb.).

Восточная часть (к востоку от линии, проходящей через Ковьглу, Орлов, Каменку и Креци) верхний горизонт нижнего яруса залегает на участках, мелководных, плитообразных и формировочных моллюсками, содержащих мелководные и мелководные формы моллюсков, из которых нижняя часть залегает Evritria eichwalti Eichw., Mastra eichwalti Lask., Cardium eichwalti Koles. (В.В. Рожки, 1964; 1967).

Верхний горизонт нижнего яруса постепенно сменяется мелководными отложениями среднего яруса.

Средний ярус. Среднесарматские отложения распространены вдоль полосы подъема, прилегающей к Вулкану. Они представлены мелководными моллюсками, рекомендованными для включении в морской комплекс: Paphia vitellina (Orb.), Belonophora spiralis (Eichw.), Paphia martensiana (Cocks.), и др. В нижней части верхнего яруса представлена морская губоководная фауна, содержащая мелководные моллюски, раковины и устричные формы. Здесь в отличие от нижнего яруса широко распространены терригенные образования. Средний ярус залегает на морских губоководных и мелководных образованиях, а также континентальных...
тальными (дельтовые, речные и озерные) фаунами. Среднесарматскими отложениями обнаружены в северной и центральной частях Молдавии: к иу от шитов г.Бейца и озера ниже уровня речной озера, мощность их возрастает с запада к востоку и достигает около 150 м (В.П.Розен, 1967).

Среднесарматские отложения по литологии и фауне моллюсков подразделяются на три горизонта, соответствующие тем этапам развития среднесарматского фасета.

Западная зона. Нижний горизонт в восточной части Предкарпатского прогиба представлен светло- и серо-серыми, слабо и континентальными, с прослоями мергелей и диатомовых спорами, которые В.П.Розен (1967) выделяет под названием слоя с Cryptocoma pseudotenuis. Мощность их 10 - 15 м.

Средний горизонт представлен толщей (15 - 100 м) серых карбонатных и алевритовых глин, содержащих в центральной и южной частях республики прослойки пелитоморфного и детритового известкового. Эти отложения залегают на слоях Cryptocoma pseudotenuis и выделены В.П.Розен (1967) под названием слоя с Cryptocoma pseudotenuis (Mayer) для характерных Cardina barbata (Nee), C. barbata (Kolbe), C. michailovi Toulou, Paphia naviculata (Nee), Margarites unguis (Nee), и др. Мощность этих слоев 15 - 100 м. Они в свою очередь перекрываются толщей (30 - 170 м) песчано- и глинистых глин с прослойками тонкосернистого кварцевого песка. Эти отложения известны под названием слоя с Cardina michailovi (В.П.Розен, 1967). В них встречаются раковины Paphia naviculata (Nee), Cardina danovi Kolbe, G. fittoni Orb., Muscula naviculoides (Kolbe).

На верхней центральной и южной частях Молдавии слой с Cardina michailovi согласно перекрывает толщу до 80 м серых алевритовых глин, алевритов и мелковернистых песков детритового и рыхлого происхождения, известных под названием конверсных слоев (А.Г.Эйзенштей, 1951; В.П.Розен, 1964). В них встречаются скопления раковин Congeria m. macei Jek., C. m. novaymiri Andrus., Hydrobia sp., Planorbis cornea L., Planorbulina sp., Lymnaea sp., Bithina sp., Unio splendens Goldf., Lymnaea sp., и др. В окрестностях сел Луштеген и Бужор в этих отложениях выявляются скопления остатков водно-болотных растений и наземных позвоночных глинямиловской гипсаклонной фауны (рис.3).

Верхний горизонт в северо-восточной и центральной части республики представлен солончаковыми и детритовыми известняками, песками и глинями, содержащими раковины Mastra podolica Rohn., Cardina ferruginea L., Paphia naviculata (Nee), Solen subfasciata (Nee). Часто в этих толщах встречаются раковины предшествующих наземных моллюсков, остатки низменных форм и солончаковых (села Инцешки, Скакулка, Кабаля) (рис. 4).

В южных районах верхнего горизонта, в В.П.Розен (1967), выделяются морскими мелководными отложениями (мощностью до 30 м), представленными серыми перекрытыми прослойками песков и глин. Фауна моллюсков имеет упомянутый облик и представлена следующими формами: Mastra cf. podolica Rohn., Cardina ferruginea L., Muscula naviculoides (Gat.).

Восточная зона отдана от западной полосой барьерных рифов. В этой зоне средний слой представлен мелководными, довольно низкими в фазональном отношении отложениями, здесь, как и в западной зоне, средний слой подразделяется на три горизонта.

Нижний горизонт представлен пелитоморфными и формиро- выми известняками (18 м), для которых характерны раковины морских моллюсков (Cardina aff. procarpatica Jek., C. aff. tibisisi Jek., Mastra sp., Paphia cf. naviculata (Nee), и Melanopsis impresa Krauss), обнаруживающие большую скопление. Эти отложения выделены В.П.Розен под названием байликовых слоев. В них залегает толща (5 - 40 м) известняков, чередующихся с диаграммо-спиральным слоями, в которых встречаются раковины Mastra pallasii Bally, Paphia gregaria (Partech), P. vitellina (Orb.).

Средний горизонт в восточной зоне южных районов Молдавии состоит в нижней части из глины алевритовых глин с прослойками мелководных песков, содержащих раковины Mastra cf. podolica Rohn., M. pallasii, M. fabrea Orb., Paphia vitellina (Orb.), P. naviculata (Nee), Cardina michailovi Toulou. В верхней части этого горизонта распространены конверсные слои.

Для остальной территории гда и центра республики В.П.Розен выделяет два типа разрезов верхнего горизонта: первый тип разреза представлен средним алевритовыми глинами с прослойками мелководных песков и детритовыми-солончаковыми
настоящих, содержащихся обуглившихся растительные остатки и ряде расположенных Maesta sp. podolica Richw., Cardium michaeli
Toole, C. sp. ingrami Koles.
Второй тип разреза включает преимущественно известняки (детритовые, форминиферы, оолитовые и известковые), содержащие фрагменты компактных мелководных моллюсков, известный под названием "клинчатого среднеюрского грунта". В кровле этих известняков у села Брянское, Мало Макарово и Новодеревеньки встречено линзовидное скопление остатков резервуаровейской глинистой фации (рис. 2).
Верхний горизонт среднего ореда представлен в восточной зоне полукруглыми глинями и песками с прослоями оолитовых известняков, содержащихся раковин Maesta podolica Richw., Cardium fittoni Orb., C. sp. ingrami Koles., Potamides nefaria (Koles.). Верхняя часть этого горизонта состоит в восточных районах из алевритовых косослоистых песков, песчаных и прослоями глинистых и суглинистых. Эти отложения входят в состав верхнелевенского верхнеюрского байкальской серии. В этих слоях у села Варвары, Скворцов и Игнатьев встречено скопление остатков наземных форм и фауны позвоночных (рис. 4).
Верхняя часть. Верхнеюрские отложения являются нижними прерывистыми, чем нижние- среднеюрскими. Они развиты в центральном и южных части отложениях северных, южных, западных и восточных в основном морских форм, которые

В центральной части находятся верхнего сарма-та он представлен развитыми в латеральной части формаций с прослоями косослоистыми песками, песчаниками и мергелем в основном глинистыми глинистой грауваккой. В этих отложениях у о. Рапсами найден крупный скопление скопление остатков наземной фауны позвоночных нижнеюрского типа.
Контингентальные отложения верхнего сармата перекрывают центральную часть отложений, они являются сложными алевритовыми: песками, мергелями и глина- ми морскими и пресноводными. По данным A. N. Худака (1992), пресноводные отложения верхнего сармата в центральной части состоят из трех глинистых и прослой в главнол-мергелистого гравия и глины, переотложе
Глава II

ГАФІФОРІЯ СРЕДНЕМІРСЬКИХ МЕСТОНАХОДІНЬ

ГІППАРІНОВОЇ ФАУНИ

В охопленіях середнього сармату остатки гіппарінової фауни зустрічалися часто і в основному в верхній частині резерву. Все среднемирское местонаходіння гіппарінової фауни расположено в галечной части Мадавія (межу широтою г.Сороки на с.ве
рн з широтою г.Болоці на пів). В результаті детального аналізу среднемирских местонаходіння гіппарінової фауни високо
лось, що вони приурочені до двух стратиграфических уровней верхніх часті середньомирского резерву.

К нижнему стратиграфическому уровню относится: кальцитное местонаходіння, расположено в долине р.Вян северо-юго-западнее г.Колона; Бережное и Маломирское местонаходіння — в долине р.Инозеев (2-3 км выше Кимнова); Радзюченковское местонаходіння — на правом склоне р.Раковец (35-20 км к югу-западу г.Сороки); в рифовой полосе в окрестностях Кимнова (северо
западнее г.Колона), у сел Гайковка, Бу
жар и р.Колоненічане в Припяти. Все эти местонаходіння приуро
чены к верхней части среднего горизонта среднего сармату (рис.1,2).

Нижние местонаходіння гіппарінової фауні середнього сармату є одними з найбільших відкладів. Іх знову на правому
склоне р.Вян, северо-западнее г.Колона за четвертичними песчаноступенями отложений значительно суживаются (см.вниз):

1. Тонким залоното-серым, кремовым, в нижней части нео
чень кремовым, содержание гальки известняков, песчаников, лежащих
в глине, а также раковин Mastera sp., Cardium sp. ділового молюсков остатков низовых позвоночных, 0,2 - 1,7 м.

2. Известняк, обломочный, содержащий в большом количестве раковины Geritiun sp., Paphia sp., Cardium fittioni Ors. и остатки низовых позвоночных, 0,7 м.

3. Слантовой известняк, слабо оцементированный, серый, охаж
ный пятными, содержащий раковины Mastera podolica Kochw., Solen subfragilis Horn., 0,1 - 0,2 м.

4. Слантовой известняк, слабо оцементированный, серый, охаж
ный пятными, содержащий раковины Mastera podolica Kochw., Solen subfragilis Horn., 0,1 - 0,2 м.

5. Известняк, обломочный, с примесью карбонатной глины и
крупных карбонатных форм обломками из соленосного извест
няка с наложными нижнелюдскими отложениями, а также нижнелюдской галькой. Здесь встречаются остатки минов (покойника, перезоложенные) и раковин молюсков (Mastera fittioni Ors., Cardium fittioni Ors., Solen subfragilis Horn., Calliconcha sp., Paphia sp., Geritiun comperti (Ors.), пресноводных (Linnanochapa sp., Lymnaea sp. и Planorbus sp.) и меловых (Helix sp.) молюсков. Раковины крупных молюсков сглажены. В слое наблюдается остатки низовых позвоночных, 1,3 м.

6. Известняк, обломочный, серый, с раковинами M. podolica Kochw., 0,2 - 0,3 м.

7. Известняк, жилтого-серый, пятничный, трещиноватый, содержащ
й карбонатные обломки соленосного известняка, извест
няковый и алладитовый гальку. Встречаются раковины Mastera podolica Kochw., Paphia vitalsiana (Ors.), Solen subfragilis Horn., Geritiun comperti (Ors.), а также раковины молюсков и остатки костей меловых позвоночных, 0,5 - 0,7 м.

8. Известняк, жилтого-серый, с мелкими ракови
нами Solen subfragilis Horn., Mastera sp., 0,2 м.

9. Известняк, обломочный, с галькой и крупными обломками, из
селевидных известняков. Здесь встречаются крупные ракови
ны молюсков (Mastera fittioni Ors., Geritiun comperti (Ors.), Cardium fittioni Ors., Solen subfragilis Horn.), а также на
славленные пресноводные молюски и остатки низовых позвоночных. В нижней части этого слоя подается наложение шаровидных отложений, 0,6 - 0,7 м.

Остатки наземных позвоночных отмечены в виде линиообразных скоплений и прикреплены к слоям I, 2, 5, 7, 9. Линия костеносных линий 60—70 м, ширина незначительная (2—3 м). По простиранию они смотрятся дихотомически к речке и меняют свое местоположение от 0,2 до 1,0 м. Общая мощность костеносных линий достигает 2,5—3,5 м. Они имеют дихотомическую ориентировку с севера на юг. Внутри отдельных линий наблюдается ориентировка трубчатых костей с севера-юга на восток-запад. Костеносные линии различаются по степени сохранности, фоссиированию и сортировке содержащих их ископаемого материала.

Первая костеносная линия (слой I и 2). Костные остатки фрагментарные, дробные, имеют темно-серую окраску, часто деформированы в формы. Встречаются фрагменты черепов, лицевых частей, костей конечностей и позвоночных, приподнятые на выделениях глинистых, костным и крупным костным материалом. В верхней части линии находятся мелкие обломки костей конечностей, фрагменты черепов и изолированные группы лягушек, мелких и крупных хищников. В средней части линии находятся крупные фрагменты костей конечностей, череп, лицевые части, а также обломки kostей конечностей гризунов, «оскорбий» и крупных хищников. Мощность линии 50—70 см.

Вторая костеносная линия (слой 5). В этой линии, в отличие от других, входят только мелкие обломки костей, черепов, изолированные группы лягушек, мелких и крупных хищников, а также остовы скелетов черепах. Часто попадаются также остатки растений, обломки древесины и скопления наполов. Кости фрагментарные, сильно обсажены, темно-коричневые, часто образуют брикеты в виде расплывчатых прослоев. Наличие привязок ориентаций костных остатков не наблюдается. Мощность линии 50—70 см.

Третья костеносная линия (слой 7). В отличие от других линий здесь встречаются преимущественно крупные фрагменты костей конечностей, черепа, лицевых частей, растительные остатки, группы лягушек, мелких и крупных хищников, а также остовы скелетов черепах. Остатки гризунов, мелких и крупных хищников, а также их обломки и скопления наполов встречаются редко. Кости имеют темно-коричневую окраску, их поверхность иногда покрыта сетью мелких трещин. Остатки фрагментарные, однако часто наблюдаются черепа, позвонки и даже обломки костей конечностей. Сохранность костей хорошая, но нередко кости деформированы (растянутые и разболтаны) и наложены в порядке под углом 30—40°. Имели встречаются кости, в которых наземных позвоночных в отдельные периоды представляла авангардную часть какой-то группы. Миграция отдельных областей в данном случае, видимо, обусловлена не столько изменением базиса эрозии, сколько увеличением или уменьшением уровня водной среды. Топло локация, которая описана назвывала псевдомоногриксреди (Л. Б. Налипкин, 15
1956), часто связано с неравномерным распределением атмосферных осадков при чередовании засушливых и влажных периодов.

Возможно, в более засушливые периоды, когда отсюда пресной воды был незначительным или совсем прекращался, оно располагалось на поверхности земли в условиях сухо-лесного биотопа, что подтверждается следами погребения покрытых землей на костях травяных, а также наличием остатков на поверхности отдельных костей. Эти и другие особенности вида описаны в работе А. В. Сергеева и А. А. Маркова.

В более засушливые периоды увеличивался приток пресной воды (из-за повышенных атмосферных осадков) и вода, которая приходила, конденсировалась на поверхности земли в условиях сухо-лесных биотопов. Это, в свою очередь, приводило к образованию на поверхности земли водных зеркал, которые в свою очередь служили для погребения костей травяных животных.

По распределению костей остатков внутри лесного местообитания происходит с течением времени (Н. А. Березов, 1960). В динамических (1-я и 2-я линии) остатки образуют плотные скопления в виде гнезд, в других (3-я и 4-я линии) они рассеяны, образуя тонкие прослои. Неравномерное распределение, а также характер сортировки костного материала свидетельствует об изменчивости гидродинамического режима потоков, осложняющих сушечные остатки незаметных позвоночных.

При большой скорости потоков в зоне захоронения они подвижные фрагменты костей, тогда как более мелкие трансформировались и откладывались на ее пределах. В таких случаях кости захоронялись быстрее, чем сортирование их наливное залегание и характер распределения в породе. С изменением скорости потоков в зоне захоронения поступали преимущественно мелкие осколки костей, которые в оползневых гидродинамических условиях обрались в землю отдельных рассеяня прослоев.

В процессе транспортировки кости дробились и разрушились. Наличие на них сильно развитыми и фрагментами костей сочлененных костей отдельных конечностей, позвонков, черепов свидетельствует о том, что остатки незаметных позвоночных осколками имеют сушечные осколки, так как близких от области захоронения мест.

Отличия в фоссилогической и сохранности костных остатков отдельных видов, по-видимому, связаны еще с тем, что в одних случаях они попадали в зону захоронения сразу после гибели и не развивались трупных животных, в других - они оставались на поверхности земли до тех пор, пока быстрые потоки не захватывали и не переносили их в зону захоронения. Иначе остатки костей на поверхности земли (в условиях сухо-лесно-вырезного биотопа) можно наблюдать чередованием засушливых и влажных периодов.
<table>
<thead>
<tr>
<th>Единая стратиграфическая школа</th>
<th>Унификация региональной стратиграфической схемы</th>
<th>Каррельская региональная стратиграфическая схема</th>
<th>Юго-западный склон Русской платформы</th>
<th>Северный склон юго-восточной платформы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Система</td>
<td>Условные значки</td>
<td>Западная зона</td>
<td>Восточная зона</td>
<td>Бассейновая зона</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Коды шахт</td>
<td>Северо-западная часть Молдавской ССР</td>
<td>Северо-восточная часть Молдавской ССР</td>
<td>Молдавская ССР</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Центральная часть Молдавской ССР</td>
<td>Центральная часть Молдавской ССР</td>
<td>Молдавская ССР</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Южная часть Молдавской ССР</td>
<td>Южная часть Молдавской ССР</td>
<td>Молдавская ССР</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Границы и интервалы с островами пресноводных меканов</td>
<td>Границы и интервалы с островами пресноводных меканов</td>
<td>Границы и интервалы с островами пресноводных меканов</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Лагерянские леса и ветви</td>
<td>Лагерянские леса и ветви</td>
<td>Лагерянские леса и ветви</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Границы и интервалы с островами пресноводных меканов</td>
<td>Границы и интервалы с островами пресноводных меканов</td>
<td>Границы и интервалы с островами пресноводных меканов</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
<td>Леса, луга и влажности с Mastra podolica, Cardium guttuliferum</td>
</tr>
<tr>
<td>Стратиграфическое время</td>
<td>Детали шахт</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
<td>До 20 метров</td>
</tr>
</tbody>
</table>

Рис. 1. Схема стратиграфии сарматских отложений Молдавской ССР (по В.Х.Романюк, 1967)
ос костей преобладает остатки молодых и старых особей. Это указывает на то, что представители кадриевской фауны погибли в результате стихийных бедствий, например, периодических наводнений.

Богатство и разнообразие ценообразующих костей позволяет рассматривать кадриевскую фауну как совокупность многочисленных видов моллюсков (Cardium fittoni Orb., Mastra fabreira Orb., Mastra podoliae Ricby., Cardium fittoni Orb. и Cardium) и перекрывающихся рядом других видов моллюсков (Navicula orb., Helix sp.). Л. П. Ребунин (1969) указывает на присутствие в этих местонахождениях ракообразных (Ctenaria sp. и Thelastoma sp.).

Любопытный характер костных скоплений, наличие раковин пресноводных моллюсков и альгологических остатков, свидетельствующих о быстром накоплении и захоронении остатков неживых позвоночных, костных и морфологических остатков, скорость которых, судя по преобладанию костей в кадриевском местонахождении, была значительной. Остатки неживых позвоночных здесь же, в кадриевском местонахождении, были захоронены, по-видимому, в завалительной части какой-либо палеоводы в период ее половодья.

Предполагаемое местонахождение. На правом склоне р. Раковь. Северный склон мелового возраста отложений (мергели и глины). Составленные слои мощностью 3 м; глины серой-зеленоватые, без фауны 1,5 м; песчаники, чередующиеся с прослоями известковистого песка, содержащие ядра раковин морских моллюсков (Mastra orb., 3 м) и известковистой гальки и многочисленные раковины морских моллюсков (Mastra fabreira Orb., Cardium fittoni Orb. и др.). Встречаются остатки древесной растительности и неживых позвоночных. В Редченько- вском местонахождении известны формы: Hipherion sp., Astratherium sp., Pocho sp. Относительно строения геологического разреза указывают на захоронение остатков наземной флоры и фауны в прибрежной полосе временных пресноводных потоков.

Местонахождение в рифовой полосе, в окрестностях г. Кимеево, в расселении между нутелларными фациями террас, а также в аллювиальных наносах ниже реки, известны остатки растительности, часто соотносимые с остатками водных позвоночных, встречаются остатки наземных позвоночных. В отличие от других местонахождений здесь костные остатки менее охарактеризованы, впервые обнаружены и описаны жестко-коричневые окислы. Вместе с костями нередко попадаются и остатки растений.

Составляющие растения кожаных позвоночных в пределах рифовой полосы трудно охарактеризовать, что-либо определенное. Не может быть, что они были привнесены и захоронены в прибрежной полосе временных потоков.

Некоторые исследователи (I. Simionescu, 1925; I. M. Сухов, 1956; E. K. Рукин, 1964; E. С. Сыцов, 1966) отмечают, что во второй половине седиментационного времени рифы в окрестностях Кимеево часто формировались в виде отдельных островков, что подтверждается наличием в рифовых отложениях внутренних элементов и надстроек. Возможно, эти островки, соединенные с суевериями, образовывали полуострова, на которые прокладывались наземные позвоночные. Однако это предположение может отнести к таким крупным зоологическим комплексам, как Hipherion, Deinotherium, Astratherium, вклад в рифовые островки, видимо, были лишены растительного покрова.

К этим местонахождениям, вероятно, привнесены остатки Pseurocrania, описанное А. И. Голиной (1964). Из морских позвоночных широко известны остатки китообразных (Sarmatodelphis moldivicus Kirp., Cetotherium priscum Elchw., Archocetus nordmanni Brandt, A. rockii Brandt, Chamadophis fuscissilis Brandt, Pochoa euripica Nordm. и др.), ящерицы (Pochoa p. sp. Elchw., P. sp. Nordm., P. semosselica Sim.) и скелеты (Mamatus sarmaticus lichw.). Известны также остатки птиц, ко-
торые, по определению Е.И. Курочкина и И.М. Гани (1972), при-
надлежат к Phalacoracoides lautus Kurotchin et Ganea (Ganly),
Ardeagnadrius arbores Kurot. et Ganea (Ganly), Amororhanka
marubukini Kurot. et Ganea (rus.), Przobucevka molveavica
Kurot. et Ganea (rus.)

Анапонское местонахождение. Среднемезозойские отложения
в окрестностях с. Ленинское описаны А.П. Ерёминой (1960) и Г.Х. Роминовой (1964). А.П. Ерёмин в районе с. Ленинское выделяет разрез
(верхняя часть):
1) глины песчанистые серого цвета с Cardium fumoni Orb.,
Mactra sp., Modiolus sp.;
2) песчаники с линиями с прослойками рыхлыми, содержа-
ящие раковины Cardium fumoni Orb., Cardium reticulatum Kol.,
C. ex gr. podolica Schla., Modiolus armatissimii Kol.,
Solenia subfragile Hrb.;
3) песчаники с линиями с прослойками рыхлыми;
4) песчаники песчано-глинистые (вверху).

В результате этих отложений мощность в несколько
метров, представленная в верхней части зеленовато-серыми
песчано-глинистыми: глины, в нижней — песками, часто
песчаными с босатой грунтовой срочной массой моллюсков (Cardium fumoni Orb.,
Cardium reticulatum Kol., Cardium sp., Mactra fabrescens Kol.,
M. ex gr. podolica Schla., Modiolus armatissimii Kol.,
Solenia subfragile Hrb., Gibbula sp., с примесью более толстосте-
нутых Mactra fabrescens Orb., Tapes sp., Calliosta sp.;
5) песчаники с линиями с прослойками рыхлыми;
6) песчаники песчано-глинистые (внизу).

А.П. Ерёмин относит песчано-глинистые отложения с
геологической святой, пресноводными и грунтовыми моллюсками к дельтовому
образованню.

В одном из образцов на юго-западной окраине с. Ленинское, в
известняковых глинах с Mactra fabrescens Orb., Modiolus sp.,
нами обнаружены остатки наземных позвоночных и отпечатки
дикобразов и трапеции растительности.

Породы, содержащие наземную фауну и флору, залегают над
зеленовато-серыми песчано-глинистыми глинами, содержащими раковины
Mactra fabrescens Orb., Cardium fumoni Orb., Conchilia sp.,
Theolusia sp., Hidrobia sp., Helix sp., и перекрываются пес-
ками с Mactra sp., Modiolus sp., Solen subfragile Hrb.

Из Анапонского местонахождения известны следующие формы:
mammillarfb, Haenirion stuttgari, Lusca, Acetatherium sp., Pa-
lastra sp., Phoca sp., Lagomys rufus L., L., R,
Reptilia: Testudo sp., Glis sp.;

Палеозойские отложения. Среднемезозойские отложения,
об-
наруженные в окрестностях с. Бык Котловского района, описаны
А.П. Ерёминой (1961), Г.Х. Роминовой (1964) и И.Н. Любченко (1971 г.).
По данным А.П. Ерёмина, в нижней части разреза описаны
деметровые толщи серых и зеленовато-серых, слоистых,
песчано-
глинистых песчаников с Conchilia praemakoni в ассоциации с пресновод-
ными моллюсками, относящимися к Anisodonta, Unio, Planorbius и

Далее следует пачка глинистых песчаников мощностью около 4 м, переходящих
в пресноводные раковины коричнево-бурые пески. Затем следуют
пресноводные песчаники мощностью 60 см, в которых обнаружены
Benthesia Brus, встречаются Donax lucidus Schla., Conchilia sp., podo-
Killsch., Gibbula rollandi (Orb.), Haenirion stuttgari,
Cardium fumoni Orb.

Раковины расположены серыми с рыхлыми пита-
миками, песчано-глинистые пески с пресноводными и
с босатой грунтовой срочной массой моллюсков до 4 м.
Пески перекрываются пачками слоем плотного и
крепкого бурых песчано-глинистого
отложения.

Г.Х. Роминов (1971) указывает, что нижние слои с Conchilia praemakoni представляют собой речные отложения, верхние слои с
Conchilia cf. seceni Jekel — озерные; последние определяются
песчано-глинистыми
массами.

На левом склоне р. Ленинская, севернее с. Бык, в луговых
растительности обнаруживаются толщи песчано-глинистых отложений мощность до 20 м, содержащие пресноводную наземную и
геологическую святой
моллюсков, которые в верхней части разреза встречаются в ассоциации с
масштабными моллюсками.

Эти отложения, по А.П. Ерёмину (1961) и Г.Х. Роминову (1971),

В речных и дельтовых фациях нами собрана многочисленная остатки наземных позвоночных, относящихся к формам:

Mammalia Insectivora: Gallerix sp., Postpalaeoleucus sp., Heterorosex aff. sannaniensis (Lartet), Talpa sp. *minuta* Blainv.;

Lagomorpha: Amphipodomus aff. fontanensi (Doparet), Lagopeus aff. verus (Hasencl., Flagopus sp., Prochoctoma eximia (Chomenek);

Rodentia: Spermophilinus bredei (Mayer), Spermophilinus turciceniscus Brul., Stenocerinae aff. desperi Mayer, Stenocerinae jaegeri (Kap), Paleomys gasteroides Kap, Monomamax minutus (Mayer), Hystrixine, den. et sp.indet., Peridomys sp., Anomalonyx guillardi Viret et Schuh, Ocitonmus sp., Rhusinxus aff. thaleri Hartenberger, Macrocestodon sp., Kowalewski sp.;

Carnivora: Propotolithus aff. medius Fetter, Pleioigulo aff. brachygnum (Schlosser), Progoneta sp., Perococuta sp., Pseudoelus (Schisadellus) sp.;

Perissodactyla: Hippodromus armoricanus Langu, Acartherium sp.;

Artiodactyla: Suidae, Gen. et sp. indet., Lagomeryx ferox, Lingu, Dicrocerus sp., Palaeoceras sp., Miotragocerus sp.;

Aves: Promillic incertus (Gaillard), Tertiariporpurula lunii Kurochka et Gense;

Reptilia: Cheliopeps aff. pontica (Pilop. et Taras), Trionyx sp., Melanochelus sp., Sagya sp., Protosteux cecarvanusviss Sealai, Ophiusaurus aff. novorossicus Alex, Varusus sp., hoffmani Rog., Coluber sp.

Placenta: Tincu sp., Silurus sp., Parasilurus sp., Barbus 4., Perca sp., Carassius sp., Rutillus sp.

В данном местонахождении преобладают остатки грызунов, некомедонных, занимаемых и лягушек, а также черепов и риб. Костные остатки малые, фрагментарные и слабо окатаны. Они встречаются в тонких линиях, мощность которых 10 – 15 см. Таких линий здесь может быть 4 – 6. Вместе остатки наземных позвоночных часто наблюдаются обломки остатков деревьев, принадлежащих, по определению С.Миника, к *Salix* sp., *Populus* sp. и *Taxodium* sp.

Таким образом, остатки наземных позвоночных в рассматриваемом местонахождении срослись с различными участками среднесарматской сини и захоронены в дельтовой области какой-то реки. Захоронение происходило в очень спокойной гидродинамической обстановке. Видимо, речные потоки обладали небольшой скоростью и в данную эпоху поступали только малые фрагменты кости, а более крупные – захоронялись в другом месте.

Из вышеперечисленного следует, что остатки наземных позвоночных в местонахождении нижнего стратиграфического уровня грунтов расположены к различным фациям:

1) в западных районах (северный и южный) – к речным и дельтовым фациям; 2) в центральных (рифтовая синь) – к речным фациям; 3) в восточных (северная и южная) – к авандельтовым фациям.

Как в западной, так и в восточной части Молдавского, дельтовые и авандельтовые фации, содержащие остатки наземных позвоночных, перекрываются неоднородными, а также морскими и речными фациями, которые, по данным В. X. Роза (1964), 50 – 65 м.

Изучение условий выхоронения остатков наземных позвоночных из нижнего стратиграфического уровня позволяет отметить следующее:

1. В конце второго этапа развития среднесарматского бассейна в северной и центральных частях республики господствовали континентальные условия. Вероятно, лишь в конце среднесарматского бассейна устанавливается к югу от 47° северной широты (рис. 2). Однако к концу среднесарматского времени моря быстро трансгрессировали в северном направлении, в результате чего центральная и северная части территории были затоплены водами среднесарматского бассейна. Это последний трансгрессия среднесарматского бассейна в северной части территории Молдавии (рис. 3).
Рис. 2. Схематическая геоэкологическая карта среднего сармату Молдавии. Время образования местонахождений гиппоптированной фауны кайдянского комплекса: 1 — суша; 2 — направление сноса обломочного материала; 3 — местонахождение фауны нижнего стратиграфического уровня; 4 — дельта; 5 — море

К верхнему стратиграфическому уровню относятся местонахождения у сел Берков (7 — 10 км севернее Бендер на берегу Днестра), Яловец (10 — 15 км южнее Кишинева), Сарец (15 — 20 км северо-западнее Кишинева), Исово (10 км северо-западнее Оргеева), Кисинь (южнее с. Радешево), Винча (8 км к юго-вос-

Рис. 3. Схематическая геоэкологическая карта среднего сармату Молдавии. Время последней трансгрессии: 1 — суша; 2 — направление сноса обломочного материала; 3 — море

точное пшт Несперен), Коблевы и Сележе (15 км западнее Кала-рена) (рис. 4). Все эти местонахождения приурочены к верхнему стратиграфическому уровню среднего сармату.

Наиболее крупным является Рыбчикское местонахождение. Здесь под четвертичными отложениями залегает песок диагонально-слоистый, желтый, со скоплениями костей наземных позвоночных и с...
плюхо сохранившихся речных зон мощностью 0,2 - 0,3 м; талькохлоров и гравий глиноэсно-мутутелек породы со скоплениями костей названных позвоночных, 0,4 - 0,5 м; песок диоксилобно-слюдистый, вверху более глинистый, перекрытый в алеврито-слюдяной слоем глины и скоплениями костей названных позвоночных, 4 - 5 м; глина зелено-серого, комковатого, I м; известняков-ракушечников плотный с многочисленными ядрами Merei podalia Eichw., 1,2 - 1,5 м. Ниже по разрезу обнаружаются глины грунтовыми续 Cardium fittioni Orb., Mereia podalia Eichw., Gerchium sp. и др.

Основные массы костных остатков находятся в галечниках. В прослоях песков, расположенных ниже и выше галечника, кости встречаются реже. Остатки названных позвоночных образуют линзовидное скопление мощностью около 1 м, шириной 1,5 - 2 м. Костеносная зона по простиранию быстро выклинивается и проявляется в прослое 10 - 20 м. Кости часто образуют в плане плотные скопления в виде гнезд, чередующихся с участками, содержащими редкие кости остатки и линзовидные их остатки, содержащиеся древесных скелетов и животных их окаменелости. Кости фрагментарные, часто наклонены и сломаны в сторону, особенно в галечнике. Надвигаются в основном крупные фрагменты костей спинного, плавника, дыхательные, динотерий и мозгожены.

Отложение, содержащие кости названных позвоночных, по видимому, представляют собой отложения или русловое или прудовое, на что указывает литологический состав и осадочная среда их захоронения.

Наиболее важные и мощные костеносные зоны, на реках выделяются, а также литологические особенности отложений указывают на то, что кости остатки захоронены в пресноводных неглубоких впадинах. Возможно, последние находили большей скоростью, благодаря чему в зону захоронения пришли в основном крупные фрагменты костей, медленно трансформирующиеся. Об этом свидетельствует химическое нарушение костей и их внешний покров в породе. Не исключено, что остатки названных позвоночных были признаны в зону захоронения с различными расстояниями, а также, видимо, можно объяснить возникновение на обрывах, что поверхность скопления костей встречается в сложении скелетов и даже скелеты элементы скелетов, в частности позвоночник.

Из верхних местонахождений иных остатки: Mammalia: Palaeomeryx oristorioides Kaup, Pteroceratops giganteus (Schl.), Hrparion sp.(a), Hrparion sp.(b), Aserbothemura sp., Dicerorhinus sp., Deinotherium aff. giganteum Kaup, Dicerorhinus pentelici (Saunders et Lart.), Lagomeryx florenti Lang, Pliolagurus mepachani (Bor.,) Moldorodon unalite Lang, gen. et sp.nov., Mecrocora lekenoivich (Bor.,) Aves: Struthio arvii Kurotochkin et Lang, Reptilia; Varanus aff. hofmanni Reg., Pseudoduro dawsonii moldaviae Eichw., et Lang, Cteneryx sp.

В составе верхних слоев присутствуют в основном глины-муть, носорог и антилопы, редко встречаются хищники, мелкие, юрский. Судя по гранулометрическим особенностям верхнего местонахождения, фауна названных позвоночных могла погибнуть в зонах наводнений выхода реки.

Собственно местонахождение. Состоит о Сирец в каменистом материале, под толщей глин и нами окаменевшим песком, в котором встречаются валуны песчаников. В обломках костей присутствуют отложения древесной, травянистой и растительности и обломки древесных.

Известны также остатки Hrparion sp. и Aserbothemura sp.

Распределение растительных остатков в породе в виде тонких прослоев и литологические характер отложений указывают на то, что остатки флоры и фауны присутствовали в зоне захоронения природных водной, и погребены в опоковых гидродинамических условиях. Зона захоронения, по видимому, представляла собой влажную область.

Определенный интерес представляет 5 новое местонахождение, однако оно еще слабо изучено. Геологический разрез связан с Н.И.Козьмакой (1957). Остатки названных позвоночных здесь, как и в Верхнеломестонахождении, встречаются в меловом и песчаном алевролитах, в теленках известняковых пород. Они, вероятно, речного или ледникового происхождения, с чем свидетельствуют колебания глинистость и наличие различий познавательных мозголов. Изв...
В окрестностях с. Ичнямей обнаружены (сверху вниз) глины жлобевато-серые (0,5 м) с раковинами Mactra podolica Zicwh., Solen subfragilis Hoern., Cardium sp., которые залегают на мелкозернистых серых песках (4-5 м), содержащих раковины Mactra fabrica Orb. Они переходят в плотные кавернозные песчаники (1-2,5 м), в которых встречаются отпечатки листв древесных (ясен, тополь, платан), травянистых растений и наземных позвоночных.

Захоронение органических остатков происходило, возможно, в тундревой или антарктической зоне.

Шатулкское и Ясеневское местонахождения. В известковистых глинках, песках и песчаниках содержатся раковины морских моллюсков (Mactra podolica Zichw., Solen subfragilis Hoern., Cardium sp.), а также остатки наземных позвоночных и обугливших растений (Hipparchion sp., Acrotherium sp., Delinaotherium giganteum Kaup, Prochotozoo sp.). Слой с остатками наземной фауны и флоры подстилаются ракуэчными известняками с остатками среднесарматской фауны морских моллюсков.

В окрестностях с. Кабаны и Селище над ракуэчными известняками среднего сармата в песках и плотных песчаниках, содержащих в нижней части редкие ядра раковин морских моллюсков, были найдены фрагментарные остатки гиппарийов. Обнаружены с остатками наземных позвоночных, по-видимому, палеозоя, присутствуют в сарматском материаля.

Рассматриваемые местонахождения верхнего ордовикско-го уровня образовались в конце среднезарматского времени по мере перемещения на юг береговой линии среднезарматского бассейна (рис. 4.).

Фауна позвоночных калفذинского комплекса включает представителей различных биоценозов, приспособленных к обитанию во влажной среде.

Анализ состояния фауны позвоночных и палеоботанических данных показывает, что территория Днепровского-Днестровского междуречья во второй половине среднего сарматского представлена слабо различимую экологическую зону с широкими и плодо обширными водными каналами, покрытыми пойменными лесами, древесно-кустарниковыми и травянистыми растительностями. Многоколониальное обитание подобной биотопической фауны, а также биоценозы указывают на наличие обширных заболоченных участков.

Гиппарионовая фауна из местонахождений верхнего стратиграфического уровня была выделена нами в отдельный фаунистический комплекс, названный нами калفذинским (А.Н. Купы, 1968 а, б). В его составе наблюдалась более открытая, приспособленная к обитанию на более открытых пространствах и в менее влажных условиях. По комплексу видов с такими элементами отсеиваются гигантские, мелкие и средние размеры, а также такие виды, как Miotherium, Pseudomys leakeviti, Mostredactus maltecati и отсутствуют многие представители калفذинской фауны (Babcockia, Pseudomys, Dicrocerus, Heteroconyx, Amphipus, Lagomys и др.).

Из сравнения систематического состава калفذинского и вариаций комплексов (табл.1) можно сделать выводы об изменении географической обстановки в восточногордской части территории нашей страны в конце среднесарматского времени. Характерный для среднего сарматского верхом-теплого климата и в конце этого времени становится более умеренным. В результате климатика приводит к сокращению заболеваемых и доживших птиц и увеличению открытым пространствам лесостепного и степного типа. Это выявлено существованием изменения в составе зверьков и птицовых.

Удивляет прохождение элементов амфибийной фауны, с чем связаны выделимые в фауне названных позвоночных в конце среднего сарматского времени, как Chilothereum, Mostredactus, Perocuoita. Выявляются некоторые формы (Schischoerus, Lagomys, Dicrocerus, Heteroconyx, Amphipus, Probaelestes и др.), характерных для гиппарионовой фауны калفذинского комплекса.

В составе среднесарматской гиппарионовой фауны в отличие от верхнеи и новосарматской преобладают формы, приспособленные к обитанию в влажных и обширных ландшафтах, а также более арханские представители, как Heteroconyx.
saniensis, Talpa minuta, Megacricetodon gregarium, Stenosofer depereti, Spermophilus breslavi, Amphilagus fontanesii, Lagopais versus, Progenetta taurica, Saimanamalius pivecaui, Pseudalurus turnmainus, Lisistron sp., Lagomurus florovii, Dicrocerus sp. и др., которые придают ей средиземноморский облик.

Наблюдаемая фауна среднего кармата, с одной стороны, состоит из африканских элементов (Heterocercx, Talpa minuta, Galerix, Amphilagus, Lagopais, Prolagus, Stenoheber, Monosaulax, Megacricetodon, Anomalomys, Spermophilus, Samalansalis, Pseudalurus, Progenetta, Lagomera, Dicrocerus, Mitracoecerus, Acrathorius, Deinothorius и др.), тесно связанных с ней со средиземноморской актиноморфной европой, и с другой — из азиатских элементов (Prochochota, Kowalkia, Ocitanaomy, Percrocuta gigantea, Machaerodrhus, Somellivor, Plesiogulo, Hipparion, Moldoreunica malamita, отрась) и др.

Первые гиппароны на территории Днестровско-Прутского междуречья появляются, видимо, в середине среднего кармата, после отступления от спектрум рес-американ. Во второй половине среднего кармата проникают в виде эмбрионов азиатской фауны. Первая волна относится к середине среднего кармата и описано с ней группа гиппарионов: отечественные, Prochochota, Spermophilus tuerolensis, Kowalkia, Ocitanaomy, Machaerodrus, Somellivora, Plesiogulo. Вторая волна эмбрионов азиатской фауны наблюдается в конце среднего кармата и характеризуется проникновением новых форм, как Percrocuta gigantea, Chilotherium, Moldoreunica, отрась и др.

Из всех известных на территории ОССР гиппарионовых фаун к средиземноморской наклоном блика североамерикан. Сходство проявляется в наличии таких общих форм, как Progenetta taurica, Lagomera florovii, Palaeodragus expectans, Mitracoecerus latnikivitschi (A.B.Bojanjak, 1979).

В Центральной Европе наиболее близка к нам видится гиппарионовая фауна Чёрных из Венгрии (M.Kretsch, 1951; 1954), также близкая с ней ряд общих элементов (Lagomera florovii, Dicrocerus, Progenetta, Mitracoecerus pannoniensis, Monosaulax minutus, Stenoheber jaegeri, Kowalkia и др.). Очевидно, что чик-марская фауна наиболее сходна с европейскими и блика к среднеазиатскому, который описывает средий периода с ним, сходство с европейской фауной представляется более арктическим и открытых ландшафтов. На этом характеризуется наличие в ее составе многочисленных антином (Palaeodragus bracycerus, P. elegans, Helicotragus major, H. macriscrurus, Ger- wasia sp., Quercus sp., Olorbus sp., Capra bohlini) и остистихов Pottiier, отсутствующих в гиппарионовой фауне среднего кармата Молдавии.

М.В.Гр. 233
<table>
<thead>
<tr>
<th>Систематический состав наземной фауны и флоры среднего сарматского подъяруса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фауна и флора</td>
</tr>
<tr>
<td>Барнийский комплекс гиппаридоновой фауны</td>
</tr>
<tr>
<td>Mammalia.</td>
</tr>
<tr>
<td>Lagomorpha: Procotoma eximia Chom.</td>
</tr>
<tr>
<td>Rodentia: Palseomys castoroides Kaup.</td>
</tr>
<tr>
<td>Carnivora: Pteroroccus giganteus (Schil.).</td>
</tr>
<tr>
<td>Proboscidea: Deinotherium giganteum Kaup, Eochoerophodon pentelicu (Gaud. et Letr.)</td>
</tr>
<tr>
<td>Perissodactyla: Hippopon sp.(a), Hippopon sp. (b), Acraterium sp., Dicerorhinus sp.</td>
</tr>
<tr>
<td>Artiodactyla: Lagenomyx florivi Langu, Palaetragus aff. expectatus (Boris.). Mammuthus amputatus Langu gen. et sp. nov., Miotragocerus leovischi (Boris.)</td>
</tr>
<tr>
<td>Aves: Struthio orlovi Kurochkin et Langu</td>
</tr>
<tr>
<td>Флора</td>
</tr>
</tbody>
</table>

Кафиринский комплекс гиппаридоновой фауны

<table>
<thead>
<tr>
<th>Фауна. Mammalia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnivora: Propertorius medius Petter, Plesiogulo brevicaudatus (Schilh.), Eomammillaria piteavia (Ozan.), Propetria sp., Komoconyx ponca (Nord.), Propetria aurora (Boris.), P. montalaii valleligena Crusej., Ichnotherium robustum (Nord.), I. semianalis Dv., Paracorpus robustus Langu sp. nov., Pseudaelurus (Schiiffiurus) turneiensis (Ozan.), Pseudaelurus sp., Metallurus palmar (Ozan.)</td>
</tr>
<tr>
<td>Proboscidea: Deinotherium giganteum Kaup, B. bavaricum Heyer, Eochoerophodon pentelicu (Gaud. et Letr.)</td>
</tr>
<tr>
<td>Perissodactyla: Hippopon sarmaticus Langu, Hippopon sp., Acraterium aff. incisivum Kaup, Dicerorhinus sp., Schisochoreus valleligenus Crusej., et Lav., Lethiroidon sp., Lagenomyx florivi Langu, Dicrocerus borneoensis (Langu), Dicrocerus sp., Palaetragus sp., Miotragocerus pamoni (Kret.)</td>
</tr>
<tr>
<td>Флора</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица I</th>
<th>Местонахождение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Барнийский стратиграфический уровень</td>
<td>Тела Валентиновки, Сириов, Иванова, Игнатов, Некрасов, Кабаев, Семенов</td>
</tr>
<tr>
<td>Нижний стратиграфический уровень</td>
<td>Тела Редь-Пришепова, Кедровка, Угрань, Шиманов, Томов, Лапшун, Тимонов</td>
</tr>
</tbody>
</table>
Глава IV

ОСИСТЕМАТИЧЕСКАЯ ЧАСТЬ

ЛУХИЕ МЛЮКИЦИДЫ (САМУПСОНА, МАММЕЛЛА)

СЕМЕЙСТВО MUSTELIDAS SWYTHSON, 1835
ПОДСЕМЕЙСТВО MUSTELIDAE GILL, 1872

Род Propotnus Filhol, 1890
Propotnus aff. medius Petter
Propotnus medium Petter: Petter G., 1963

Описания. Мі (рис. 6) с укороченной и овально узкой коронкой. Тригонику суживается впереди, на нижней части его не удваивает. Шестигранник, краево вверху и внизу. Тригилль по отношению к переднему очень узкому. Нижняя по отношению к верхнему узкой. Тригилль вверху и внизу. Ирригационная такие неравная, неравная и наклонная. Глубокая и узкая. Тригилль вверху и внизу. На периферийном расстоянии от коронки коронки неравная, неравная и наклонная. Глубокая и узкая. Тригилль вверху и внизу. Линии Мі (рис. 6). Propotnus aff. medius Petter. Длинный Мі.

Алабанський Propotnus среднего сарматта отличается от P. samaracensis Filhol из среднегномовской фауне Франции (L. Gainsburg, 1961) и P. minimus Zanez из митышской фауне Китая (0.62xmm, 1964) меньшими размерами, более укороченными талионом и нижними тригонику. Эти отличительные особенности указывают на некоторую специализацию описываемой формы. Среднесарматский Propotnus по размерам и строению нижнего хищного зуба сближается с P. media из алабанской гимнаропо-
жной фауне Кан-Любатереса из Испании (O.Petter, 1963). От испанской формы среднекатагогский Propor torius отличается более низким метаксоном и наличием слабо выраженного гиппоконула у M₂. Эти различия могут быть объяснены либо степенью отклонения зубов от нормальной размерности. Однако, хотя сходство между P. brachygnathus и среднекатагогским Propor torius очень большое, и они, возможно, ксенодомы, отдельные один и тот же вид. Вероятно, они вместе ходят в среднем сармате обратно и в различных фитосомах и охотятся на более тяжеловесных, птиц, промежуточных.

Геологическое и географическое распространение, а) Средний аляк; нижний стратиграфический уровень; б) Кан-Любатерес; Валле-Пенаес, Испания.

Материал: Изолированный M₁. Коллекция (колл) Германиски, город, степ. им. Т.Г. Триченико (ПИИР) № 2.

Род Plesiogulo Zdansky, 1924
Plesiogulo aff. brachygnathus (Schlosser)
Tavl. I, Стр. 7, 8
Lutra brachygnathus Schlosser; Schlosser, 1903
Plesiogulo brachygnathus (Schl.); Zdansky, 1924
Plesiogulo brachygnathus (Schl.); Kurten, 1924, 1970

Описание. Горизонтальная ветвь нижней челюсти (рис.7, 9), обложенная впереди P₂ и постели M₂. Высота ветви на уровне середины M₂ 16 мм. Передний край массивной ямки расположен у заднего края M₂.

Рис. 7. Plesiogulo aff. brachygnathus (Schl.); а - верхний M₁; 6 - образец нижней челюсти с P₂ - M₁

P₂. Коронка конической формы. От вершин главного конуса и основания переднего и заднего краев выступают острые гребни. На внутренней и наружной сторонах имеется слабо выраженный базальный воротничок. Длина х ширина коронки 4,0 х 5,5 мм.

P₃ почти в два раза круче P₂ и характеризуется сильным метаксоном, верхним надрезом и зазубренным верхом. У основания и задних краев главного конуса имеет вид острых перегородок. Базальный воротничок выражен резче, чем на P₂. Длина х ширина коронки 7,0 х 5,0 мм; высота 6,0 мм.

P₄ крупный, сильно выделяют в продольном направлении. Базальный воротничок хорошо развит на переднем и заднем краях, а также на латеральной стороне. Высота на заднем крае расположена сильнее обособленный маленький добавочный бугорок. Длина х ширина коронки 12,0 х 5,0 мм; высота 8,0 мм.

M₁ сравнительно длинный и высокий. Высота ветви ветви составляет половину высоты коронки. Пяточная наноожь и проконус, но несколько ниже метаксона. Он отклонен внутрь и имеет почти такую же длину, что и проконус. Последний выше P₄ и имеет наклонный верхний надрез. Метаксон хорошо выражен, отходя назад и достигает почти половины высоты проконуса. Тригонид относительно короткий, его длина составляет 1/3 длины коронки. Тригонид по проекции меньше тригониды, а наружный его край намного выше внутреннего. Поверхность окрашена тонким слоем внутренних. Гиппоконус хорошо развит. Длина х ширина коронки 12,0 х 7,0 мм; высота 8,5 мм. Длина х ширина толщины 5,8 х 3,6 мм. В длину сохраняется высота M₂. Длина х ширина ее 8,5 х 5,0 мм.

В коллекции имеется также изолированный M₂, который мы относим к описанной форме. Коронка M₂ трапециевидного очертания. Ее длина почти в полтора раза меньше ширины. Длина внутренней стороны коронки намного больше наружной, а передняя отрезка шире задней. Проконус низкий и смещенный с верхним тонким верхним привесками. От его вершины к переднему переднему привеску тянется ровный направленный гребень. Пяточная наноожь короткая. Ее длина превосходит высоту, расширяет в продольном направлении и слегка в основании. Коронка имеет один широкий внутренний корень и два небольших наружных. Длина х ширина ее 8,0 х 12,0 мм (рис.7, а).

Сравнение и замечания. Plesiogulo из среднего сармата приведен к медленному виду. По размерам и особенностям строения

Вопрос о фаилогении рода Plesiochus пока является спорным. По мнению Петера (B. Peter, 1963), Plesiochus мог возникнуть от ветви Isochrysiteis. Он обращает внимание на большое сходство в строении черепа и зубов этих родов. Действительно, в строении зубов среднесерматского Plesiochus и некоторых видов Isochrysiteis (I. mustellina) наблюдается определенное сходство. Однако пока трудно говорить определенно о происхождении Plesiochus от рода Isochrysiteis, поскольку их сходство может быть обусловлено близким родством, тем более что в среднем сермата они существовали одновременно в водной фауне Европы. Несмотря на то, что форма рода Isochrysiteis (I. peteri), описанный в среднесерматское время, на нём виды, более специализированные, чем Plesiochus.

Характер строения зубов указывает, что среднесерматские плецифоры были способны дробить и перерабатывать массовые кости, каким образом могли найти на крупных травоядных коптиках. По образу жизни в какой-то мере они сходы с крупными плодовыми хищниками.

Геологическое и геохрононое рас пространение. а) Средний сермата, нижний стратиграфический уровень; с. Буков, Котовский район; в) нижний понт, Китай.

Материал. Фрагмент правой ветви нижней челюсти с P₂ – M₁, материал M₁. Кол. ТПП № 2.

СЕМЬЯСТВО MUSTELIDAE SWAINSON, 1835
ПОДСЕМЬЯ MELINDRADOR GILL, 1972

Род Eumelilla Parnes, 1926
Eumelilla piteaui Osmannoy
Tabl. I, fig. 1 - 6; tabl. промеров 2 и 3
Eumelilla piteaui Osmannoy, 1965
Eumelilla sp.; Лунга А.Н., 1968
Eumelilla ligurita Osmannoy et Gineburg; M. Owlsfont Penva et Gineburg, 1973

Описание. Верхние зубы (рис. 8, а, б; 9, а, б), у I₄ коронка сжата с боков и слабо согнута назад. Передне-задний диаметр почти вдвое короче поперечного. Передняя сторона выступает, на задней стороне имеется воронка, образующая прямую линию. I₄ имеет такое же отверстие как I₁, но немного крупнее и перпендикулярное наклонено назад. I₃ имеет ушко, с верхней, вогнутой назад и почти вдоль крупнее I₂ и I₄. Задняя сторона шире передней. По материковой и медиальной сторонам тонкое слабо выраженная черед. Воронка хорошо развит на задней стороне, где образуется пяточка.
С (клык) длинный и тонкий, оставляет низ и немного охватывает боков. По передней части и по медиальной части тянется слабо выраженная продольная гребня.

P^1 однокорковый, прямой и толстый с P^2 клыков. Коронка имеет вид тупого конуса с верхушкой, закругленной внутрь. Наружная сторона выпукла. На задней стороне имеется слабо выращенный воротничок, образующий острый угол. В скошенном виде по отношению к продольной оси часто.

P^2 имеет большие P^1, коронка относительно длинная, овально-треугольной формы. Задняя часть значительно шире передней и оттянута вперёд. P^2, как и P^1, расположе под углом к продольной оси челею. От вершины конуса и передним к заднему краю тянется хорошо выраженная гребень. Воротничок смотрит внутрь и выступает перед ним и задним краем.

P^3 по сравнению с P^2 в положении равенство большие и расположены продольно к оси челюсти. Коронка в форме овально-треугольной, с широкой вершиной и узкой основой черепа. Верхняя часть наклонена назад, и от нее к основанию тянется слабо выраженная продольная гребень. На задней стороне имеется ясно заметный добавочный бугор. Как и на P^1, воротничок разветвляется на внутренней стороне, передней и задней частях.

P^4 крупный. Протокон оттянут назад и внутрь. Его передний край пологий, а задний - почти прямой. У основания передней-назадной стороны параллельна и небольшое ребро. Мета-

мия ниже и меньше параекон, задний край его вытянут внутрь. Между вершинами этих бугорков лежит продольная впадина, направленная внутрь. Протокон относительно низкий и имеет вид тупого, хорошо обособленного конуса, оставляя немного вперед. На передней, задней и передней стороне коронки слабо выделяется воротничок.

M_1 характеризуется узкой коронкой, длина которой почти в два раза меньше ширины. Протокон имеет форму низкого тупого конуса. От его вершины к внутреннему краю и параллельно тянется гребень. На нём предварительно небольшой бугорок, соединяющий гребень с нижним и окружающий метакон. Скошенная коронка со всех сторон воротничок особенно сильное развит на внутренней и наружной стороне.

Нижняя челюсть (рис.10). Горизонтальная ветвь нижней короткая и относительно низкая. Высота ее на уровне переднего края P_4 26 мм, а посадки 30 мм. Скелетная часть очень длинная; задний ее край расположены ниже уровня переднего края P_4. Длина нижней части приблизительно 35 мм. Ветвь в области P_3 16 мм. Нижний край прямой, в передней части выпуклый.

На передней поверхности нижней части имеется множество конических отверстий, по-видимому, для кровеносных сосудов. На наружной стороне нижней части имеются короткие и слабо выраженные воротнички, впереди края не вытянут вперед, до уровня M_4. Угловой отросток короткий и слабо развит. Суходный отросток низкий, с укороченной и вытянутой наружной частью и слабо вытянут вперед на внутренней стороне. Венечный отросток слабее, чем у других костей, отклонен назад. Forma mandibulare широкая и находит на уровне заднего края M_2.

Нижняя ветвь (рис.10). I_1 отсутствует, I_2 снят о боков, наружная сторона его выпукла. Носороговидная поверхность имеет ясно заметный гребень. На латеральной стороне развит маленький добавочный бугорок.
И3 клинообразный, с выгнутой внутрь верхушкой и несколько круче, чем И2. Наружная сторона его выпукла, внутренняя образует пятку. На наружной стороне резко выражены добавочные бугорки.

С (клык) массивный, высокий, слегка острый наверх, с гладкой эмалью, слегка с медиально-латеральной стороной. Наружная сторона в отличие от внутренней слегка выпукла. Посередине внутренней и медиальной сторон налипают слабо выраженные гребни.

Р1 плоско, прыгает к клыку и Р2 и имеет вид небольшого конуса с верхушкой, выключающей внутрь. Задняя сторона его немного шире передней. От вершины конуса к основанию задней поверхности тянется гребень. Воротничок развит на внутренней стороне. Наружная сторона выпукла.

Р2 имеет овально-треугольную коронку и почти всюдкую крупнее Р1. Задняя сторона его шире передней и отстает внутрь, передняя — упала и отстает наружу. Гребень главного конуса хорошо выражены. Добавочный бугорок, как и на Р1, отсутствует. Воротничок опоясывает коронку только с внутренней стороны. Зуд восьмого расположен по отношению к продольной оси чешуек.

Р3 имеет такое же строение, как и Р2, но немного крупнее, а продольные гребни на задней добавочной бугорок выражены резче. Воротничок развит на внутренней, задней и передней сторонах.

Р4 по строению напоминает Р3, но крупнее и расположен продольно к оси чешуек. Добавочный бугорок развит только на задней стороне и более обособлен, чем на Р3. Воротничок выражены на передней и задней сторонах коронки.

М1 относительно длинный и узкий. Коронка с наружной стороны выпукла, а с внутренней — слегка вогнута. Параанод и протоанод разделены глубокой щелью. Протоанод относительно длинный, высокий, с острыми ребристыми краями и фасетированной верхушкой. Параанод короче и ниже, его передний край отходит внутрь. Такие овальной формы. Метаанод отсутствует. Воротничок не развит.

М2 с округло-овальной коронкой. В центре имеется небольшой бугорок, от вершины которого идут слабо выраженные гребни в передней, задней и наружной сторон. В связи с этим на наружной стороне зуб образуется две небольших седловидных впадины.

Для сравнения, Homallovus из средненеранских отложений Кам-пилина по общим пропорциям зубов близок к Burmeister (Oriov) 8.
aff. winani Zdan. и B. ramsana (Sim.), известны по местонахождениям гиппарионовой фауны верхнего ордовика (Гребенки) и могилёва (Чимки, Новая Земля – УССР) на территории кирилло-белоозерской части СССР (I. Simionescu, 1936; E. A. Orlov, 1947), но резко отличаются от них по строению нижней челюсти и зубного аппарата. У среднесарматской формы в отличие от перечисленных видов нижняя челюсть характеризуется нынешним нижним промежуточным прорезью, тщательно и длинным сифазом. Она ниже и короче, имеет слабо развитые чешуйчатые и уголковые острия и менее напоминает на- выд венецкий отросток.

Зубы описанной виды по сравнению с E. ursogoli, E. aff.

winani и B. ramsana отличаются узкими, длинными и относительно высокими коронками, что отражает их более высокий характер. Треугольные в сечении коронки переднелеконечных зубов имеют слабо развитые бугорки, которые на P₁ и P₂ отсутствуют, а на P₃ и P₄ выражены только на вершине острий.

одна из отличительных особенностей средненесарматской B. aquilliana является то, что передний край P₁, P₂ и P₃ резко оттес- нут наружу, а задний — внутрь, образуя осядь с закругленным углом около 25°. Это признак слабее выражено у E. ursogoli и E. winani.

E. winani Zdan., из палеоарктической гиппарионовой фауны Китая (O. Zdanovski, 1924) отличается от нашей формы массивной нижней челюстью с более коротким сифазом. Коронки зубов у нее шире и осядь вее выражены, добавочные бугорки на них разве выражены, верхний плосконачный зуб укорочен, а нижний — несколько удлинен.
Известные из сибирских отложений Индии E. neocrophila Pilg. (сион Chingli) и E. tenestratus Pilg. (сион Dhek - Patan) (G. Pilgrin, 1932) отличаются от среднесарматской Somallivora рядом особенностей в морфологии и строении зубов. E. neocrophila меньше по размерам, зубы у них узки, причем плоскожилые удлинены. Однако между среднесарматской Somallivora и E. neocrophila наблюдается определенное сходство, которое проявляется в степени развитии зубчатых щетинок на переднееконечных зубах, а также в особенностях строения и размерах нижней челюсти. К осеннему времени, трудно выделить отношение среднесарматской Somallivora к E. tenestratus, так как последняя известна по очень окукливым и фрагментарным остаткам. Обнаруживается некоторое сходство в строении нижней челюсти, но индийская форма меньше по размерам и короче ее зубов.

По размерам и строению зубов и нижней челюсти среднесарматская Somallivora очень близка к E. pivateani Осм. из среднего олигоцена Туркмении (P. Omulov, 1965). У них формы, в отличие от последней, на жевательных сторонах 2, 3, 13 необходимы хорошо развиты зубчатые щетинки. Эти образования слабее выражены на верхних переднееконечных зубах. Однако между этими видами незначительны, и мы считаем возможным относить среднесарматскую Somallivora к E. pivateani.

Из сравнения видно, что E. pivateani отличается от известных видов емелициров (E. urugul, E. wimanis, E. rumena, E. hungarica altera, E. hungarica) значительно меньшими размерами, более узкими коронками зубов, слабым развитием зубчатых щетинок на переднееконечных зубах и протоках на р. долином и глубоком овальном, слабо развитыми угловыми и оставными отростками нижней челясти. Из этих особенностей характеризуется среднесарматскую E. pivateani как более примитивную и менее специализированную форму по сравнению с вышеупомянутыми видами емелициров. Некоторые черты строения нижней челясти указывают на глубокую животную мускулатуру среднесарматской емелицировы, а ее зубы были неизменны к глубокому и перерганизко костям. По-видимому, E. pivateani является предковой формой для современных видов емелициров. Она очень близка к E. neocrophila Pilg. и возможно, между ними существуют родственные связи. Особенности строения зубов и нижней челясти E. neocrophila указывают на то, что она более примитивна, чем E. pivateani. Не исключено, что последняя берет начало от E. neocrophila, возникшей, видимо, в раннем или в начале среднесарматского времени в южной Азии и позже мигрировавшей в Европу.

E. pivateani нужно рассматривать как один из характерных элементов гиппарфоносовой фауны среднесарматского времени. На изображении пойманных в нейтальный кости: славен, антроп, славен, гиппарфононов и др. (P. Omulov, 1947), внутренний свит E. сабака, отмечает, что эти кости хорошо сохранять способность к заимствованию деревянных ветвей в большей степени, чем росомахи.

Геологическое распределение. a) Средний Леденецкий слой, нижняя структурная область. b) Казахстан, Казанцевский район; c) Казахстан, Казанцевский район; d) Казахстан, Туркмения; e) Казахстан, Иракия.

Материал. Осьлом верхней челясти с C - P; верхняя щековая часть с C, S, I, - I; обломок верхней челясти с P - N; обломок верхней челясти с P - P; обломок нижней челясти с M, u; левая нижняя челясть, обломок правой конечности M; обломок нижней челюсти с 1 - 3; 3; P, P, и P, наложенные кости (2 экз.); 1, 2, 3, 1, 2, 3, 1, 2, 3 (1 экз.); P, P, M, M (1 экз.); M, M (2 экз.). Кол. TПИ № 1 (2013 - 2023).

Род E. pivateani: 1890

Фрагмент нижней челясти с P - M; a - орнамент, b - интегура

Рис. II. Изображение фрагмента нижней челясти с P - M; a - орнамент, b - интегура
Покрупнее P₃, а на задней стороне имеется хорошая развитая добавочная бугорчатая, которая достигает более половины высоты главного конуса. Воротничок всегда выражен, чем на P₃, особенно на задней стороне, где образует пятку. Длина х ширина коронки 6,0 х 3,0 мм.

М₃. Задняя часть выступа расширяется, сохраняя только сильно уплотненную парасинусид. Длина парасинусид 5 мм, ширина коронки 4 мм. Длина P₂ - P₄ около 16 мм.

Покрышкой имеется многочисленные вузы:

1. І₆ мелкополый, конической формы со дна выступает бугорком на латеральной стороне. Передняя-выводная х медиально-латеральная поперечник 1,0 х 1,2 мм.

2. І₆ по сравнению с І₆, почти в два раза крупнее, ярко-оранжевый, втянут в паз, его латеральная сторона овальная выступает. Посередине латеральной поверхности имеется орнаментом на гребень. На латеральной стороне в виде винной кружки развивается воротничок. Передняя-выводная х медиально-латеральная поперечник 2,2 х 1,8 мм.

Покрышкой имеет также одно отверстие, как и І₆, но значительно крупнее, перекрытая его сильно втянут в паз, а воротничок на медиальной стороне всегда хорошо развит. Передняя-выводная х медиально-латеральная поперечник 3,0 х 2,0 мм.

3. Покрышка имеет узкую и длинную коронку, надежда на задней стороне которой оттянута назад и образует паз. На передней и задней сторонах имеются орнаментом на гребень. Добавочная бугорчатая отсутствует. Длина х ширина коронки 8,0 х 3,0 мм.

Средний ряд. Череп (покр. II): Сохраняется только лицевая часть, обложенная покрышкой. Морда узкая, эллиптическая в задней части. Верхнечелюстные кости ниже. Подглазничное отверстие имеет вид больших овальной ячей и соединяется с глазницей. Оно расположено на уровне переднего края P₄. Сильная деформация черепа не позволяет судить о строении носовых, межчелюстных и лобных костей и форме глазниц. Последние сильно укорочены и расположены очень низко.

Верхние архи. Резцы (І₁ - І₂) малые, долотообразные, о краях вдавлены на внутренней стороне, у щ фиброзной ткани, и по верхнему краю резцовых острых, ярко-коричневых, с затылочным пазом и небольшим экзогенным простым гребнем. На медиальной стороне имеется одно заметное ребро. Небольшая диаметральная отделяет у щ от ножки. На соседних зубах длинные, тонкие, с орнаментом на гребень и орнаментом на задней поверхности. По медиальной стороне протягивается продольное ребро. Между C и P₃ имеется диаметральная (5 мм).
Таблица 4

<table>
<thead>
<tr>
<th>Проверы черепа и нижней челюсти</th>
<th>P. taurica (Bor.)</th>
<th>Калфа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Высота вершин на уровне клыков (сверху)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>P^1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>P^2</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Линия от I^3 до переднего края глазницы</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Передний резцового отдела</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Длина зубного ряда</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C — M^2)</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>(P^1 — M^2)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>(P^1 — P^4)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Линия от клыка до заднего края угла</td>
<td>96,0; 97,0</td>
<td></td>
</tr>
<tr>
<td>Ушной ветви между</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P^2 и P^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M^1 — M^2</td>
<td>12,0 — 15,3</td>
<td></td>
</tr>
<tr>
<td>W^1 — M^2</td>
<td>17,0 — 18,5</td>
<td></td>
</tr>
<tr>
<td>Ветви между P^2 и P^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Длина зубного ряда</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C — M^2</td>
<td>62,0 — 65,0</td>
<td></td>
</tr>
<tr>
<td>P^1 — M^2</td>
<td>47,0 — 56,0</td>
<td></td>
</tr>
<tr>
<td>P^2 — M^2</td>
<td>51,0 — 55,0</td>
<td></td>
</tr>
<tr>
<td>P^2 — P^1</td>
<td>43,0 — 49,5</td>
<td></td>
</tr>
</tbody>
</table>

Конечный паракон с протоконом. При сжатии коронка он едва заметно сокращается.

P^1 трехкорневой и имеет форму равнобедренного треугольника. Передняя сторона его намного шире задней. Передний край зуба параллелен и образует большой угол с наружной стенкой P^1. Паракон, метакон и протокон хорошо выражены. От переднего края паракона к протокону проходит небольшой гребень. При сжатии зуба паракон и метакон соединяются и образуют единый линейный, наклоненный верх и низда. Плотокон относительно широкий, слабо сжат с боков и оттянут взад. Посередине поверхность зуба имеет овальную ямку.

P^2 трехкорневой, по строению напоминает P^1, но почти на 1/3 меньше его и имеет округленную коронку с острым задним надломом протокона.
Таблица 5

Параметры верхних зубов

<table>
<thead>
<tr>
<th>Промеры, мм</th>
<th>Progenetta taurica (Boris.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Надежка, Матаджин</td>
</tr>
<tr>
<td></td>
<td>(по А.А.Воронцову, 1915)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I₁</th>
<th>I₂</th>
<th>I₃</th>
<th>C</th>
<th>S</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
<th>P₆</th>
<th>P₇</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,0 x 2,5</td>
<td>? x 2,5</td>
<td></td>
<td></td>
<td></td>
<td>7,0 - 7,0</td>
<td>4,5 x 3,0</td>
<td>9,5 - 10,0</td>
<td>6,0 - 6,0</td>
<td>17,5 - 18,5</td>
<td>6,5 - 7,0</td>
<td>5,0 x 7,0</td>
</tr>
<tr>
<td></td>
<td>3,5 x 3,0</td>
<td>? x 3,0</td>
<td></td>
<td></td>
<td></td>
<td>7,0 - 7,0</td>
<td>4,5 x 3,0</td>
<td>9,5 - 10,0</td>
<td>6,0 - 6,0</td>
<td>17,5 - 18,5</td>
<td>6,5 - 7,0</td>
<td>5,0 x 7,0</td>
</tr>
<tr>
<td></td>
<td>5,0 x 4,0</td>
<td>7,0 x 4,0</td>
<td></td>
<td></td>
<td></td>
<td>6,0 x 5,0</td>
<td>4,5 x 3,0</td>
<td>9,5 x 5,0</td>
<td>6,0 x 5,0</td>
<td>18,5 x 5,0</td>
<td>7,0 x 12,0</td>
<td>5,0 x 7,0</td>
</tr>
<tr>
<td></td>
<td>7,0 - 7,0</td>
<td>4,5 x 3,0</td>
<td></td>
<td></td>
<td></td>
<td>6,0 x 5,0</td>
<td>4,5 x 3,0</td>
<td>9,5 x 5,0</td>
<td>6,0 x 5,0</td>
<td>18,5 x 5,0</td>
<td>7,0 x 12,0</td>
<td>5,0 x 7,0</td>
</tr>
</tbody>
</table>

Нижняя челюсть (рис. 13, a) имеет массивное строение. Горизонтальные ветви тонкие, широкие, и относительно длинные. Высота сложена увеличивается в заднем направлении. Нижний край окруженный, смыкается сзади длинным, задним концом его находится на уровне середины P₂. Подбородочное отверстие меньше, чем расположено на уровне верхних отверстий. P₁, P₂ и P₃, расположены на уровне верхних отверстий. Соединительный участок сложен сзади сложен с C, так как не может быть скомбинирован с P₄. Задняя часть нижней челюсти состоит из двух частей: одной большой дуги и одной маленькой дуги. У основания дуги находится на уровне середины P₁.

Нижние зубы. Резцы маленькие, пологообразные, особенно I₁ и I₂. Они слажены медиально и латерально гребешками, которые сходятся на задней стороне и образуют выемку в задней части. С (лайм) тонкий, высокий, конечная форма, о верхушке, выступает внизу. На медиальной стороне имеется короткий расположенный гребешок. Диаметр между C и P₁ около 4 - 5 мм.

Примечание: P₁, о дымчато коричневого цвета. Наружная сторона прямая, в середине утолщается. Высочайшая точка с клиновидной стороны. P₂, на противоположной стороне, P₂, и P₃, отделен большой диастемой.

P₂ имеет узкую, низкую и широкую часть. По переднему и заднему краям протягивается овально выраженные гребни. На задней стороне образуется тесная соединение и овально развитый добавочный гребень, соединяющийся на передней стороне.

P₃ имеет крупное P₄, задняя часть значительно шире передней и образует тесную диафрагму. Добавочные бугорки как на передней, так и на задней стороны хорошо развиты. Воротничок описывает контур с наружной и задней сторон.

P₄, добавочные бугорки более развитые, чем у P₃, особенно на задней стороне. Базальный воротничок резко выраженный на задней и наружной стороне. При этом на передней стороне он имеет узкую вторую косую гребень, от которого на внутреннем крае часто обособляется добавочный бугорок.

M₂, короткий и высокий. Наружный конец верхние клыки и нижние протоконды, а передний край его отступает вперед и внутрь. Протоконды высокий и узкий. Метаконды сильно развиты, но мало прикрыты и прикрепляются к парокондилу. Он хорошо обособлен и имеет форму клиновидного бугорка, а задняя сторона его находится на одной линии с задним краем протоконды. Точечный торкрет (состоит из 22 - 24%) от длины зуба) и состоит из трех рядов выраженных бугорков. Бугорки узкие, вытянуты и при отражении зубов искрятся. Гипокондил хорошо развит; между ним и протокондилом наблюдается небольшой бугорок, при сгибе прикрепляется к гребенке. Воротничок описывает контур со всех сторон, но особенно резко развивается на передней-наружной стороне.
Таблица 6

<table>
<thead>
<tr>
<th>Проценты нижних зубов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Промеры, мм</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Передне-задний × медиально-латеральный промежуток</td>
</tr>
<tr>
<td>I_1</td>
</tr>
<tr>
<td>I_2</td>
</tr>
<tr>
<td>I_3</td>
</tr>
<tr>
<td>С</td>
</tr>
<tr>
<td>Длина × ширина</td>
</tr>
<tr>
<td>P_1</td>
</tr>
<tr>
<td>P_2</td>
</tr>
<tr>
<td>P_3</td>
</tr>
<tr>
<td>P_4</td>
</tr>
<tr>
<td>M_2</td>
</tr>
<tr>
<td>Длина тангенциала</td>
</tr>
<tr>
<td>M_2 × ширина</td>
</tr>
</tbody>
</table>

M_2 (рис. 13, в): одного сортса, имеет форму овальные овальной формы и состоит из трех маленьких зубов.

Кости конечности. Из костей погребального скелета коллекции представлены: проксимальные концы плечевых, лучевых, бедренных и большеберцовой кости, а также плечевые, надплечные, метакарпальные, метатаральные кости и фаланги.

Сравнение. Среднеземноморская Progenetta taurica (Boris.) по размерам и особенностям строения зубного аппарата даже отличается от P. Oranses Majors и P. montanai (Cravat-Paire) и отличается от P. Oranses (forme A) и P. Oranses (forme B) в морфогенезе и морфологических отложениях Испании (J. Viret, 1961; M. Crujas-Cravat-Paire и G. Petter, 1969). Но в значении морфологических отличий в размерах среднеземноморской P. taurica, имеется более укороченное плоскодонное зубы, резко выраженный протокон и более высокий амфион на P_4, а также совершенно короткий тандаж на M_1. Во морфологии и особенностях строения зубов P. taurica очень близка к P. Oranses (forme A) и P. Oranses (forme B) и P. Oranses (forme C) в морфогенезах отложений Европы-Палеолита в Испании (M. Crujas-Cravat-Paire и G. Petter, 1969). Однако у P. Oranses (forme A) из нижнего мезолита (на-Labracies II) тандаж на M_1 короче, а P_4 имеет более высокий амфион, хорошо выраженный воротничок на протоконе и необработанной гребешок, соединяющий последний с пароконом. Эти признаки характеризуют P. Oranses (forme A) как более специализированный и более примитивный формой по сравнению со среднеземноморской P. taurica.

Специфичность строения M_1 (удлиненный тандаж, высокий троконд) и P_4 (высокий амфион) характеризует среднеземноморскую P. taurica как высоко эклоготически и специализированные форму по сравнению с P. Oranses из среднего мезолита и раннего валдеца и сближает его с более мезолитическими видами инкремента. Перечисленные признаки строения плоскодонных зубов, также и строительно высокие коронки переднеберцовых, а также сильная пропорции зубов указывают на большую близость P. taurica к P. Oranses (forme B) и P. Oranses (forme C). Различия между ними незначительны и, вероятно, они представляют один и тот же вид. Поэтому мы относим валдеемские формы к P. taurica. Отметим также, что среднеземноморская P. tauri...
По строению зубного аппарата, костей посткраниального скелета и размерам близка к P. rossiana, от которой она, возможно, и происходит.

Геологическое и географическое распределение. а) Средний сармат, верхний стратиграфический уровень: с. Наумовка, Новомосковский район; б) средний сармат, п. Севастополь, УССР; в) средний сармат, ул. Педос, Испания; г) миоцен, среднее сарматское, Турция.

Материал. Череп с обломанным мозговым отделом; правая и левая ветви нижней челюсти (7 экз.); изолированные зубы (76 экз.); фрагменты костей проекционных отделов конечностей (15 экз.); кости запястья и запястье (11 экз.); пластины и плоские кости (1 экз.); фрагменты (30 экз). Кол. ТПП № 1 (2035 - 2161).

Замечание. Progenetta taurica является одним из мелких мишек среднеземорских гиперборейских фауны. Она имела удлиненное тело, тонкие, сравнительно длинные, пальцеходящие, и, видимо, функционально целостные конечности. Эти животные уходили слабо выражено, чем у позднеземорских и ледниковых эпох. Среднеазаурские пролонгеты имели слабо выраженные, очевидно, маленькие сегменты. Сердце суровое, какую роль играли в этом мелких мишек в среднеземорской наземной фауне. Особенно строением черепа, нижней челюсти и зубного аппарата указывает на то, что среднеземорские пролонгеты были приспособлены к коротким и дробным костей. Вероятно, эти мелкие мишки сбегали в пойменных лесах и зарослях кустарников, где скапливались на мелких грунтовых, этических, луговых и местах. По образу жизни они напоминают некоторых современных степных видов (Uiverra citrata).

Progenetta taurica является одним из характерных представителей палеозойской гиперборейской фауны. Ареал распространения этой формы в среднем сармате был очень широк. О чем
ная сторона в нижней части тупыла. Имеются три ментальных отверстия: два — на уровне середины P₂ и одно — на уровне переднего края P₃. Синяя короткий, задний край его расположен на уровне середины P₂. Высота ветви слабо увеличивается сверху вниз; высота ее в верхней P₂ 25 мм, в средней M₃ 27 мм. Некоторая толщина под P₄ 14 мм. Длина P₂ — M₃ (без талониды) около 50 мм, а P₂ — P₄ 47 мм. О размерах многих зубов трудно судить, так как они разрущены дышем альвеолярного края. Пространство между C и P₂ разрушено и P₃ не сохранился. Расстояние от C до P₃ около 7 мм.

Внешний вид P₂ с узкой и высокой коронкой; задняя часть вуза уменьшена и оттянута книзу. Продольные трещины главного конуса в заднем и среднем области грубо напряжены. Передний донный бугорок отсутствует. P₃ в отличие от P₂ намного крупнее, имеет слабо развитый передний донный бугорок более развитым задним. Задняя часть вуза слабо рахищена, с тенденцией к образованию штрик. Характерно, что у P₂ и P₃ коронка узкая и высокая, че струговидной формы в ожевении, а верхние передние коронковые отклоняют вовсе. Передняя часть P₂ и P₃ резко приподнята крыльями — оттянута книзу.

На переднем конце P₃ и среднем соприкасается с ним по отошечной. Верхняя гладкая конуса не загнута вниз. Дополнительные бугорки еще не заметны и достигают почти половины высоты главного конуса. Коронка вуза расположена к зениту языка и принимает в ожевении овально-грушевидное очертание. Имеется хорошо развитый талонид, состоящий из двух бугорков, из которых внутренний слабо развит. У M₃ коронка укорочена и высокая, направления вытянутые вниз, напряженные вентильно ниже и немного дальше протоконика. Наружная стенка вуза вертикальная, внутренняя — представляет собой пологу площадку со слабо выраженным желобком впереди. Протоконик короткий и высокий, сдвинут кпереди от наружного губыя и прямым. На наружной стороне имеются площадки отложений, доходящие до основания коронки. Межкоронко вышовий и высокий. Воронки погружаются на переднюю наружную и внутреннюю стороны коронки. И срезом, нельзя судить о отстоянных размерах талонидов, так как задняя часть вуза разрушенна. Передние коренные зубы вены в некоторых промежутках и расположены по одной прямой. Оформление межкоронковых.

В костях пострикательного скелета в коллекции имеется один экземпляр M₃, морфология которой свидетельствует о том, что P.montadai vallesiensis представляла собой пальцедоходную

<table>
<thead>
<tr>
<th>Таблица 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Промеры верхних коренных зубов</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Промеры, мм</th>
<th>Progenetta montadai vallesiensis (Crassafont-Paier)</th>
<th>Караль, Молдавия</th>
</tr>
</thead>
<tbody>
<tr>
<td>P²</td>
<td>Индекс 1 : 1</td>
<td>13,0</td>
</tr>
<tr>
<td>1. Длина</td>
<td>12,0</td>
<td></td>
</tr>
<tr>
<td>2. Ширина</td>
<td>11,0</td>
<td></td>
</tr>
<tr>
<td>P₃</td>
<td>Индекс 2 : 1</td>
<td>46,6</td>
</tr>
<tr>
<td>1. Длина</td>
<td>18,0</td>
<td></td>
</tr>
<tr>
<td>2. Ширина</td>
<td>11,0</td>
<td></td>
</tr>
<tr>
<td>Индекс 2 : 1</td>
<td>61,1</td>
<td></td>
</tr>
</tbody>
</table>

Форму с длинными и стройными конечностями. Первый палец, но-видимому, был редуцирован. Длина кости 74 мм; передний — задний коснов-медиалльных напорожки проксимального конца 23 х 12 мм; то же самое дистального конца 9 х 10 мм.

<table>
<thead>
<tr>
<th>Таблица 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Промеры нижних коренных зубов</td>
</tr>
</tbody>
</table>

| Промеры, мм | Progenetta montadai vallesiensis (Crassafont-Paier) | | Испания (по Крууф-Поирр, 1959) |
| --- | --- | --- |
| P² | Индекс 1 : 1 | 14,1 |
| 1. Длина | 14,0 |
| 2. Ширина | 9,0 |
| P₃ | Индекс 2 : 1 | 67,1 |
| 1. Длина | 17,0 |
| 2. Ширина | 9,0 |
| Индекс 2 : 1 | 62,9 |
| P₄ | Индекс 2 : 1 | 20,5 |
| 1. Длина | 15,0 |
| 2. Ширина | 10,0 |
| Индекс 2 : 1 | 62,5 |
| M₃ | Индекс 2 : 2 | 16,9 |
| 1. Длина | 16,0 |
| 2. Длина противника | 16,0 |
| 3. Ширина | 10,0 |
| Индекс 3 : 2 | 62,5 |
Сравнение. Описываемая форма из среднего сармата имеет крупные и массивные зубы с резко выраженным геновидными обтяжкой. Однако ряд признаков (размерная сутинчатость зубов, узкие высокие коронки и четвертная отсутствие в сечении передних зубов, а также высокий и относительно короткий M1) указывают на археологическую ось формы. Крупные размеры и указанные особенности строения зубов отличают среднесарматическую Progenetta от таких поздненакидановских форм, как P. cerata Deper., P. galliardii Major, P. castanea Deper., и обитают с P. montalai (Vill. et Graf.), характерной для позднего накиданов Северной Азии (J.Viret, 1866; M. Crusafont-Pairo et G. Petter, 1869). В отличие от последней наша форма характеризуется широким развитием дистальными элементами. В期刊 на преджаржалих зубах и более высоким назад коном на M1. По особенностям строения нижней челюсти и зубов среднеевропейская Progenetta очень близка к P. montalai vallesiensia (Crusafont-Pairo), известной из раннеэффективной фауны Испании (M. Crusafont-Pairo et G. Petter, 1869). Учитывая это сходство, мы относим среднесарматскую форму из Молдавии к P. montalai vallesiensia.

Замечание. Обнарод (1866) описывает из отложений среднего сармата Турции новый вид индустрии I. tuberculatum. Нужно отметить, что эта форма характеризуется узкими и высокими коронками зубов с сильно развитыми дистальными и узкими площадками суженных. По этим особенностям и по размерам I. tuberculatum сближается с Progenetta из среднего сармата и P. montalai vallesiensia. По-видимому, I. tuberculatum, как и среднесарматскую форму, нужно относить к P. montalai vallesiensia.

Геологическое и географическое распространение. а) Средний сармат, нижний стратиграфический уровень; с. Калда, Новосилецкий район; в) средний сармат, Турция.

Материал. Обломки левой ветви нижней челюсти с P2 - M1; изолированные P2 и P3; один экз. м. Ш. Кол. ТТИ № 1 (2161 - 2165).

Замечание. Progenetta из среднего сармата строением зубов и нижней челюсти несколько схожа с крупными формами индустрии (I. hippocamme, I. lyraeana), но в отличие от них имеет более массивную, низкую и укороченную нижнюю челюсть, а также сравнительно узкую, высокую с лучшей сутинчатостью предкоронных ушков и укороченных плоскообразных зубов. Следует отметить, что генеральные черты в среднесарматской P. montalai vallesiensia резко выражены, чем у крупных форм индустрии. Вместе с тем особенности строения зубов и нижней челюсти указывают на некоторую их специализацию и сближают эту форму с родом Lycasena. Из всех известных видов рода Lycasena к P. montalai vallesiensia особенно близка L. parva. Она из мелового гиппенарийской фауны Молдавии. Однако, несмотря на почти одинаковый профиль зубов, между ними имеются существенные различия. В P. montalai vallesiensia в отличие от L. parva предкоренные зубы более высокие и узкие, а корень на M1 короткий, низкий и низкий. У среднесарматской Progenetta нижняя челюсть почти на 1/4 короче по сравнению с L. parva. В связи с этим P. montalai vallesiensia кажется более специализированной, чем Lycasena parva. По-видимому, между montalai и Lycasena существует родственная связь и они, очевидно, относятся к одной филогенетической ветви.

У нас изучаем симметричные виды Crusafont-Pairo и Viret (1869) относительно систематического положения рода Lycasena и Progenetta montalai. Они относятся к формам ко семейству Eo-teriine. На них, видимо, нужно включать в подсемейство Eo-terininae.

Близкая к посредниковской P. montalai P. montalai vallesiensia отличается от нее рядом морфологических признаков в строении зубов: более высокими коронками, уплощенными передним на M1. Мы не располагаем достаточными данными, но, возможно, что P. montalai vallesiensia следует относить к роду Lycasena.

Мощные зубы, припоселенческие к дроблению костей, длинные и стройные конечности характерно P. montalai vallesiensia как высоко эволюционированную форму с резко выраженным геновидными чертами. Эти палеобитические строительные индустрии, напоминающие современного волка, были активными охотниками не только на мелков, но и на крупных хищников среднесарматской фауны.
1982

род Peracantha Kretacic, 1938
Peracantha robusta Lungu Blr. nov
Табл. 14, фг. 4-8; табл. 15, фг. 1-4; текст, с. 10-11

Голотип: Лежащая ветвь нижней ячейки с P2-M1; серый сармит, нижний сегментарный узел; с. Кадца, Новоновоминский район, Кол. ТПИ № 1 (2168) (рис. 17).

Диагноз: Очень крупный преддаточный род Peracantha с укороченной мордой и мощным зубным аппаратом. Подкоренные зубы, особенно P2 и P3, сильно скошены, о которых и относительно высоких коронок и хорошо развитыми добавочными сустаками. Ряд P4 сильно скошен, R1 отсутствует, P2 и P3 очень крупные. Отношение длины P4/P3 = 88 - 90%; P2/P1 = P4/P3 = 23 - 24% и P2/P3 = M1 = 22 - 23%. Дополнительные зубы сильно уточнены. Паратип на P4 имеет вид хорошо обусловленного сустаков, который достигает длины 1/3 длины зуба, а кисть может быть амфионом, но значительно длиннее его. Отношение длины P1/P4 = P1/P4 = 40 - 42%.

М1 более укороченный, чем верхний плодственный шар. Соотношение длины M1/P2 - M1 = 28 - 29%. Имеется слабо выраженный метакон, степень развития которого невелика. Таким образом, длина и расстояние между межзубными сустаками. Межзубные дистанции, высокие и длинные коронарами. Ветки нижней чешуи резко увеличиваются в длину под M1. Во всех случаях ветки и ветвей отростков слабо разделены на незначительные длины. Длина восточного ряда (P2 - M1) = 102 - 103 мм.

Опишем. Верхние зубы. Молочные та1, та2 о долотообразной формы, сужены к основанию. У середины коронки они имеют хорошо выраженный добавочный сустаков, на медиальной стороне та1, та2 и добавочный сустак и гребень отходят на заднюю сторону, где образуют звездчатые ветвления. Передне-задний диаметр та1 = 6,5 мм; та2 = 8 мм; верхнечелюстной та1 = 5,5 мм, та2 = 7,3 мм.

та3 клинообразный и немного больший та1 и та2. По медиальной и латеральной сторонам проходят острый продольный гребень, который не находится на здании поверхности. У основания внутренней части задней стороны имеется хорошо обусловленный сустаков. Передне-задний диаметр 12 мм, поперечный 11 мм.

\(P4 \). Коронка в сечении треугольно-овальная. Главный коронный выступ относительно низкий, в длину продольные гребни слабо выражены. Наружная сторона коронки слабо выпуклая, внутренняя - плоская. Задняя часть внутренней стороны расширена и подвернута в вертикальном направлении. Задняя часть зуба значительно шире передней и имеет слабо выраженный дополнительный сустаков. Длина коронки 15 - 15,5 мм, ширину 8 - 11 мм.

\(P4 \). Молочный плодственный зуб имеет длинное, наклонное и островершинное в виде левая. По отношению ряда отличается от послеплодного плодового зуба \(P4 \). Имеет три коронки: две наружных, которые выражены прилегающие зубы в виду внутренней, более крупной. Внутренний корень длинный, скошен и ориентирован поперек оси зуба. На нем расположен протоколон, отходящий внутрь нерва, далеко от основания амфионов. Протоколон имеет форму овального сустака с безупречной вершиной. Параспинальный в виде наклонного, округленного сустака, отходящего направо. На передне-латеральной стороне амфион имеет хорошо обусловленный сустаков, который с наружной стороны соединяется с наружным. Амфион имеет в месте сустаков образует овальный нерв и вершина их слабо разделены с внутренней стороны. Амфион значительно выше и в дна ряда дна межзубные сустаков и характеризуется относительной нервной длиной и направлением. Длина коронки 28 - 39 мм; ширину с протоколоном 20 - 21 мм; без протоколона 10 - 11 мм.

\(P4 \) по строению напоминает \(P4 \) и характеризуется узкой и очень длинной коронкой треугольного сечения. Состоят из трех мезимальных сустаков и имеют тройно расположенные коронки. Длина коронки 9 - 10 мм; ширина 17 - 18 мм.

Коренные зубы (рис. 15, a, b). P1 редуцированный, одноночный, состоит из одного сустаков, наружная сторона которого выпуклая, а внутренняя - слабо вогнута к вадутам у основания. Поперечные гребни одноглазые на внутренней стороне. Отношение длины P1/P2 = 38 - 40%, P1/P1 = P4/P4 = 8 - 9%.

\(P2 \) крупных размеров, коронка снаружи выпуклая. Отношение длины P2/P3 = 55%. Главный корень мелкий и сравнительно низкий. На задней части зуба имеется хорошо обусловленный добавочный сустаков, достигающий почти 2/3 высоты главного сустаков. Передний зуб сустаков слабо развит и расположен на перед-
Рис. 15. Pecrcocuta robusta Lunda ар. нов. Верхний зубной ряд (P₁ - P₄): а - снаружи, б - сверху
не-внутренней стороне. Он похож на базальные образования. Воронкообраз отсутствует.
P³ значительно крупнее, чем P². Передняя часть зуба расширена в вертикальном направлении. Главный конус относительно высокий, с хорошо выраженными продольными гребнями. Задний бугорок сильнее развит, чем на P², и достигает почти половины высоты главного конуса. Передний добавочный бугорок маленький, слабо обособлен и расположен у основания передне-внутренней стороны. Отношение длины P³/P⁴ 61 - 64%.

Рис. 16. Pecrcocuta robusta Lunda ар. нов. Верхний P⁴: а - снаружи, б - изнутри

Рис. 17. Pecrcocuta robusta Lunda ар. нов. Левая нижняя зубная: а - сверху; б - снаружи

P⁴ мощный, высокий и сравнительно короткий. Наступает в виде хорошо развитого конуса, имеющего почти такую же высоту, как и в P⁴, и достигает более половины высоты амфиокона. Он не охватывает лезвия и отделен от амфиокона с наружной и внутренней сторон. Основания внутренней стенки перестиля и части амфиокона разрушаются, что не позволяет судить о степени развития протокона (в последний признак очень важен для систематически похожих видов). Амфиокон высокий и узкий, и вместе с метатилилом образует лезвие. Метатилилом по длине почти равен амфиокону. Задняя часть метатилила резко отходит наружу. По основанию внутренней стороны зуба тянется слабо выраженный воронкообраз. Основание длины P⁴/P₁ - P⁴ 42 - 44% (рис. 16, а, б).

Нижняя челюсть (рис. 17, а, б). Тело челюсти массивное и утолщенное, высота ее резко увеличивается к P₄. Средняя короткая, задний край его кончается на уровне переднего P₄. Впереди P₃ тело челюсти увеличивается в высоту, что, видимо, связано с развитием нижнего клыка. Имеются два подбородочных отверстия: переднее, более крупное, расположено под передним P₄, заднее - под передним хрящом P₃. Рога masteterica очень глубокие, субтреугольных очертаний, передний край их натянут вперед до уровня заднего хряща P₄. Суставной отросток мощный, оттянут на-
Таблица 9

Промеры верхних коренных кубов

<table>
<thead>
<tr>
<th>Промеры, мм</th>
<th>P. robusta (s.g. nov.)</th>
<th>P. aegyptiaca (Aran.)</th>
<th>P. saldivirescens (Aran.)</th>
<th>P. eximia (Rot. et Wag.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Каледон, Молдавия</td>
<td>Адмир</td>
<td>Гришин</td>
<td>Тармилон</td>
</tr>
<tr>
<td></td>
<td>(по Артемову, 1959)</td>
<td>(по Д.А. Орлова, 1947)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>I. Длина</td>
<td>9,0</td>
<td>9,5</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>2. Ширина</td>
<td>9,0</td>
<td>9,2</td>
<td>-</td>
</tr>
<tr>
<td>P₂</td>
<td>I. Длина</td>
<td>23,0; 24,0</td>
<td>24,0</td>
<td>22,0</td>
</tr>
<tr>
<td></td>
<td>2. Длина</td>
<td>14,0; 14,5</td>
<td>14,8</td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td>Индейко 2:1</td>
<td>60,8; 60,5</td>
<td>68,3</td>
<td>68,2</td>
</tr>
<tr>
<td>P₃</td>
<td>I. Длина</td>
<td>17,0</td>
<td>28,5;27,0</td>
<td>27,2</td>
</tr>
<tr>
<td></td>
<td>2. Длина</td>
<td>18,0</td>
<td>21,0;21,4</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td>Индейко 2:1</td>
<td>66,6</td>
<td>79,6;80,7</td>
<td>82,4</td>
</tr>
<tr>
<td>P₄</td>
<td>I. Длина</td>
<td>42,0;44,0</td>
<td>40,5</td>
<td>44,4</td>
</tr>
<tr>
<td></td>
<td>2. Длина</td>
<td>-</td>
<td>25,5</td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td>Индейко 2:1</td>
<td>-</td>
<td>62,9</td>
<td>66,3</td>
</tr>
<tr>
<td>Длина P₁ - P₄</td>
<td>100 - 106</td>
<td>91,5</td>
<td>94,0</td>
<td>-</td>
</tr>
</tbody>
</table>

Руко к расположению значительно ниже альвеолярного края M₁. Восходящая и горизонтальная ветви образуют угол около 37°. Восходящая ветвь в неженческом отростке одновременно развита.

Промеры (в мм) нижних клыков

Длина от P₂ до заднего края суставного отростка	170
Зазора впереди P₂	44; 45
Зазора впереди P₃	39; 40
Зазора впереди M₁	53
Зазора позади M₁	49; 49
Толщина в области P₂	22,5
Длина сжатия	48; 50
Длина P₂ - M₁	102; 103

Нижние зубы. Молочные. Длина P₂ - P₄ около 60 мм. Молочные зубы характеризуются длинными, узкими и относительно нежными коронками, в отличие от коренных, гладкой эмалью.

P₄₃. Задняя часть зуба шире передней и слегка вогнута. Коронка в сечении имеет овально-треугольное очертание. Центральный конус узкий и высокий, от его вершины к основанию по периферии и в заднем конце вытягиваются острые ресницы. Довольные сутурки хорошо обособлены, причем задний лучше выражен, чем передний. Задняя часть образует пятку. Длина коронки 16 мм, ширина 7 мм.

P₃₄ почти в полтора раза круче P₂. Коронка в сечении четырехугольная. Довольные сутурки хорошо развиты и достигают почти половины высоты главного конуса. На передней стороне имеется хорошо развитый талонид. Длина коронки 20 мм; ширина 7,5 - 8 мм.

P₄₅ крупнее P₃₄. Пласма почти такой же длины, как и протоконд, но ниже и оттянута вверху. Протоконд выступает с более выраженной вырезкой на вершине и в глубине сутурки. Метатоконд сильно развит, достигает почти половины высоты протоконда и имеет форму острую и хорошо обособленного сутурки. Талонид длинный и состоит из трех маленьких бугорков. Он составляет почти 25% длины зуба. Длина коронки 24 - 25 мм; ширина 9 - 10 мм.

Коронки. Как и у моляров, вершина его овальная и вогнутая назад, в отличие от моляров. Внутренняя поверхность зуба определяется двумя перпендикулярными линиями, ортогонально расположенных между собой. Длина коронки P₁ относительно мальма и ближе к ней.

P₂ подкручен; отношение длины P₂/P₃ около 88 - 90%, а P₃/P₄ - M₁ - 22 - 23%. Коронка в сечении треугольно-овальная, в нижних же выраженная значительно шире передней. Главный конус относительно нежный, с хорошо выраженным хребтом, который его вырезает длина и ширина, причем второй лучше выражена. Довольные сутуры хорошо развиты, коронка на передней стороне вырывает широкую пятку.

P₃ по сравнению с P₂ немного круче и выше, коронка имеет четырехугольное сечение. Высота главного конуса по сравнению с длиной коронки и чуть больше ее ширины. Относения длины P₃/P₄ около 86 - 88%, а P₃/P₄ - M₁ - 24 - 25%. Довольные сутуры хорошо развиты и лучше выражены, чем на P₂. Как и на P₂, коронка образует широкую пятку.
<table>
<thead>
<tr>
<th>Показатели нижних коренных зубов</th>
<th>P. robusta мв.</th>
<th>P. algisicens (Атлас)</th>
<th>P. eximia (Rot. et Mag.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Калия, Молдыаш</td>
<td>Ахир (по</td>
<td>Тарантип</td>
</tr>
<tr>
<td>Промеры, мм</td>
<td>Археологу, 1959)</td>
<td>(по Р.А. Орлона, 1941)</td>
<td></td>
</tr>
<tr>
<td>С I. Длина</td>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P2 I. Длина</td>
<td>22; 23</td>
<td>24,2</td>
<td>16; 17</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>15,5; 16</td>
<td>16,6</td>
<td>10; 10,5</td>
</tr>
<tr>
<td>Индекс 2:1</td>
<td>71,45</td>
<td>68,6</td>
<td>65; 5</td>
</tr>
<tr>
<td>P3 I. Длина</td>
<td>24; 25</td>
<td>24,3</td>
<td>18 - 21</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>16; 16,5</td>
<td>17,3</td>
<td>12,3 - 13</td>
</tr>
<tr>
<td>Индекс 2:1</td>
<td>66,6; 66</td>
<td>71,1</td>
<td>68,1 - 61,3</td>
</tr>
<tr>
<td>P4 I. Длина</td>
<td>28; 28</td>
<td>28,5</td>
<td>20 - 22,7</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>16; 17</td>
<td>18,3</td>
<td>12 - 12,7</td>
</tr>
<tr>
<td>Индекс 2:1</td>
<td>59,3; 60,7</td>
<td>57,1</td>
<td>69 - 59,5</td>
</tr>
<tr>
<td>M1 I. Длина</td>
<td>30; 30</td>
<td>26,8</td>
<td>27,0; 29,7</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>14; 15</td>
<td>14</td>
<td>12 - 17</td>
</tr>
<tr>
<td>Индекс 2:1</td>
<td>45,3; 50</td>
<td>52</td>
<td>44,4 - 56,5</td>
</tr>
<tr>
<td>Длина P2 - M1</td>
<td>103; 103</td>
<td>103,8</td>
<td>82 - 83</td>
</tr>
</tbody>
</table>

П2 по строению сходен с P3, но значительно крупнее; у него выше коронка к небу развиты дополнительные бугорки, особенно передний. Отношение длины P4/M1 93 - 94%, P2/P3 - M1 28 - 30%. M1 относительно короткий. Отношение длины M1/P2 - M1 28 - 39%. Верхние зубы такой же длины, как и проконюд, но намного выше его. На переднем-нижнем крае имеется хорошо развитый коронок, максилларный хорошо выражен. Короткий и высокий восток, короткий и узкий восток хорошо развит, гипсовый идолем узкий и длинный и дяса при открытии зуба исчезает.

Сравнение и замечание. P. robusta из среднего сарматского периода характеризуется крупными размерами и очень мощным зубным аппаратом. Из всех известных миоценовых видов этого в отношении они уступают только P. gigantea. Не отмеченные особенности: укороченность плоскодонных и крупные размеры предкоренных зубов, особенно P3 и P4; наличие на M1 металлоид, относительно длинный галапоф, состоящий из трех бугорков; резное увеличение длины галапофной ветви нижней чецини вершины P2 и под M1 и слабое отклонение назад ее поперечной ветви и верхнего отростка.

Отмеченные особенности довольно часты встречаются у P. gigantea, как и у P. robusta, а также у P. minor, у P. minor (Kurten, 1957), P. miocenica (P. et Theis), P. Petroeic, P. Théblia, P. minor (Owen, 1961).

Кроме названных размеров, перечисленные формы отличаются от P. robusta тем, что у них на M1 имеется более короткий талонд и отсутствуют металлоид, а предкоренные зубы имеют более низкие и уже коронки со сложно развитыми добавочными бугорками и слабо развитыми размерами. P. robusta отличается от P. gigantea (L., Schloeser, 1904), P. senyurek (Owen) (P. robusta, 1961), P. avhepa (Bog., B.V. Bogachev, 1927) и P. avhepa (Bog., 1927), P. avhepa (Bog., 1927) меньшими размерами, более слабой редукцией предкоренных зубов, длинным талондом и наличием металлоида на M1, а также более укороченностью плоскодонных зубов.

Из более развитых миоценовых видов первый у P. robusta по некоторым признакам строения зубов приближается P. tangurenensis (Comm.) и P. minor (Comm.). Сходство проявляется и степень развития предкоренных зубов, особенно P2 и P3. У этих видов предкоренные зубы массивные, с широкими коронками, как у P. robusta, но значительно уступают им в размерах. У P. tangurenensis в отличие от P. robusta плоскодонные зубы длинные, M1 с коротким талондом и без метатонд, а добавочные бугорки на предкоренных зубах слабее развиты. Также это различие наблюдается в строении зубов между P. minor и P. robusta. Указанные миоценовые виды перекрывают более специализированы, чем P. robusta.

P. eximia (Rot. et Mag.) отличается от P. robusta меньшими размерами, более узкими коронками зубов с низкой развитой добавочной бугорком, а также более развитием предкоренных зубов. Однако между этими формами наблюдается определенное сходство, которое проявляется в ряде особенностей строения плоскодонных зубов: в диске и строении талонд и при-
существ метаконида на M₃; в степени развития амфисона и мета-
стила на P₄. Отметим также, что у P. robusta плотные зубы
менее редуцированы, чем у P. eximia.

Большое сходство в размерах и строении зубов наблюдается
между P. robusta и P. salomonica (And.) (C. Andrews, 1918). На
нашем материале не сохранился протокон на P₃, но на P₄ у P. salo-
monica он хорошо развит. В отличие от P. robusta у P. salo-
monica P₄ имеет более развитый центральный и кортикальный мета-
стиль, а также более редуцированный P₃. Однако различия между этими
видами выражены незначительно.

K P. robusta очень близка P. algeriensis (Arè.), (C. Arbem-
bourg, 1969). Это проявляется в их размерах, особенностях
строения нижней челюсти, в степени развития и развитии десна-
вочных бугорков на предкоренных зубах и в укороченности плото-
ядных зубов. Вместе с тем наблюдается и определенное различие
в строении зубов: у P. robusta плотные зубы менее укороче-
ны, а P₃ имеет слабо развитый метаконид. По размерам и не-
которым особенностям строения зубов у P. robusta близка P. grandois (B. Kurten, 1957). Но последняя известна по фрагмен-
tарным остаткам и очень трудно выделить ее систематическое
положение. По данным, которые приводит Куртен (B. Kurten, 1957)
P. grandois близка к P. algeriensis и P. robusta, чем к P. cassimex и P. gigantea.

Из сравнения видно, что P. robusta из среднесредиземного
отложения Медеиса по морфологии и строению нижней челюсти
и зубного аппарата обнаруживает достаточное сходство с P. sa-
lonica и P. algeriensis. Более уплотнение плотных зубов,
наличие метаконида и сравнительно длинного телопод на M₃ ха-
рактеризует P. robusta по сравнению с P. salomonica и P. alge-
rienisis как более примитивную и менее специализированную форму.

Трудно сказать, определиться, на какой вид идёт перекрест
(P. abeeasalomi, P. mlocenica, P. cassimex, P. minor, P. tungurensis) ближе
эволюционированы и ни одна из них не может рассматривать
ся как предсказываемая P. robusta. Издинные виды имеют бо-
ле упроченные предкоренные зубы, кортикальный телонд и редуцир-
ованный метаконид на M₃ и, видимо, более развитый протоко-
лопд на P₄, что свидетельствует о высоком уровне их специали-
зации.

но, очевидно, P. robusta следует рассматривать как пред-
сказывающую для P. salomonica и P. algeriensis и, возможно,
для P. grandois.

P. robusta - P. algeriensis - P. salomonica, по всей веро-
ятности, представляют собой одну филогенетический ветвь. Струк-
турные ветвления зубного аппарата выявляются сочетаниями прини-
ка, характерных для P. nyasae, так и для P. crocuta. Возможно,
что с этой ветви вышли P. eximia и P. robusta.

Геологическое и палеогенерическое распространение. Среднее
мертвое, нижний стратиграфический уровень; с. Калда, Восто-
чный район.

Материал. Кроме голотипа в коллекции имеется три непол-
ные ветви нижней челюсти, изолированые верхние и нижние зубы;
молодые (30 а.м.) и коренные (40 а.м.) Кол. ТТП № I (2165-
2242).

P. gigantea (Schloes.)

Так, ф. I - 5; табл. пр. II и III.

Nyassa gigantea Schil.; Schloes., 1903

Gigantea gigantea (Schil.); Pflug., 1931

Gigantea (P. gigantea) gigantea (Schil.); Kurten, 1957

Nyassa gigantea (Schil.); Pflug., 1931

Nyassa senyireki Oz. & Oli., 1951

Nyassa senyireki (Ozan.); Ozanoy F., 1955

Ozania m.; Hnaya A.F., 1959

Описание. Имеющийся образец верхней резцовой части с P₃
и альвеолами I₁ и I₂ указывает на крупные размеры резцов
(рис.19), резко возрастующие от I₁ к I₃. Коронки сцежи от ла-
гально-мезиальной стороны, I₃ маленький, клинообразный, с верхне-
кой, сильно загнутой внутри. С медиальной стороны имеется со-
ровечный, обрастающий слизистым зубам, которое не переходит
на задний сторону. Судя по альвеоле, верхний кляк был
крупный. P₄ (рис.18, a, о). Верхний плотный зуб имеет большие
размеры, о очень высокой и длинной коронке. Обращение ее вы-
соты к длине около 70%. Протокон полностью редуцирована, име-
ется лишь слабый след его в виде базального образования у ос-
нования вершины. Последний имеет форму массивного и окру-
женной формы, отделенного от наружной и внутренней сторон вы-
ходом. Верхний плотный зуб имеет кортикальный телонд и рас-
сегрет продольное лезвие. По его внутренней стороне имеется
Зак.293
Рис. 18. Perococuta gigantans (Schl.). Верхний P4: а - изнутри, б - снаружи.

Рис. 19. Perococuta gigantans (Schl.). Фрагмент верхней резцовой части с I3.

Таблица II

<table>
<thead>
<tr>
<th>Промеры верхних резцов</th>
<th>Альвеола</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I2</td>
</tr>
<tr>
<td>Перемычка амфистомы</td>
<td>12</td>
</tr>
<tr>
<td>Перемычка полукруглой</td>
<td>6</td>
</tr>
</tbody>
</table>

слабо выраженный гребень. Амфистом высокий, имеет угловатую и сильно расширенную в вертикальном направлении внутреннюю стенку с резко оттянутыми вперед нижним краем. Наружная сторона амфистомы выпукла, окутганная. Места этого очень длинный и имеет форму вогнутого края, лежащего на большинстве края. Он приподнят в два раза длиннее амфистомы и чуть короче суммарной длины пароконий и амфистомы. По окружности боковой стороне лежит слабо выраженный воротник.

Нижняя чельсть (рис. 20, а). Имеющийся слой горизонтальной ветви указывает на высокую и очень массивную чельсть.

Рис. 20. Perococuta gigantans (Schl.): а - фрагмент нижней чельсти с P4 и M1; б - нижний Pd4 (снаружи).

Описываемого вида. Высота ветви впереди P4 85 мм; впереди M1 67 мм, низкобольная ширина 27 мм.

P4 характеризуется высокой и относительно широкой коронкой четырехугольного сечения. Отношение длины коронки к ширине 57%, а отношение высоты к длине 83%. Досовыходные дуги хорошо развиты; передний зуб шире развит, чем задний, и достигает почти половины высоты головного конуса. На задней стороне зуба имеется сильно развитый воротник, который проходит на верхнюю и внутреннюю сторону.

M1 короткий, коронка чуть длиннее, чем у P4. Отношение длины P4/M1 90, 4 - 94,5%. Пароконий имеет почти такую же длину, как и протоконий. Внутренняя поверхность его разделена острым вертикальным гребнем на две нерважные части, а на передне-внутренней стороне прослеживается несколько продольных ребер из медиальных бугорков. Таким образом, пароконий имеет в сечении грушевидную форму. Протоконий более высокий, чем пароконий, сидит с боков и имеет сопрягаемые края. Метаконий отсутствует. Талонид состоит из двух вогнутых бугорков и уже при слабом сращении принимает форму сагittalного образования. Следует отметить, что талонид сильно редуцирован; отношение его длины к полой длине M1 = 12 - 13,5.

Pd4 (рис. 20, б), как и постоянные аузы, характеризуется крупными размерами. Протоконий по длине равен пароконику, но значительно выше его и имеет сопрягаемые края. Метаконий хорошо раз-
<table>
<thead>
<tr>
<th>Промеры, мм</th>
<th>P. aegyptianus (Sch.)</th>
<th>P. aegyptianus (Sch.)</th>
<th>P. aegyptianus (Sch.)</th>
<th>P. aegyptianus (Sch.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1. Длина</td>
<td>-</td>
<td>-</td>
<td>28,5</td>
<td>25,6</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>-</td>
<td>-</td>
<td>19,0</td>
<td>15,0</td>
</tr>
<tr>
<td>Индекс 2 : 1</td>
<td>-</td>
<td>-</td>
<td>66,6</td>
<td>59,0</td>
</tr>
<tr>
<td>P⁺ 1. Длина</td>
<td>-</td>
<td>34,2 ; 38,3</td>
<td>34,0</td>
<td>32,3</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>-</td>
<td>19,5</td>
<td>24,0</td>
<td>22,5</td>
</tr>
<tr>
<td>Индекс 2 : 1</td>
<td>-</td>
<td>60,2 ; 61,0</td>
<td>70,5</td>
<td>60,9</td>
</tr>
<tr>
<td>P⁻ 1. Длина</td>
<td>55,0 ; 56,8</td>
<td>44,0</td>
<td>52,0</td>
<td>50,5</td>
</tr>
<tr>
<td>2. Ширина</td>
<td>27,0 ; 27,5</td>
<td>27,0</td>
<td>27,0</td>
<td>27,0</td>
</tr>
<tr>
<td>Индекс 2 : 1</td>
<td>49,0 ; 47,5</td>
<td>51,8</td>
<td>51,8</td>
<td>51,8</td>
</tr>
<tr>
<td>Отношение</td>
<td>-</td>
<td>-</td>
<td>52,0</td>
<td>52,0</td>
</tr>
</tbody>
</table>

Полная длина кости 54 мм; ширина 40 мм; длина x ширина блока 37 x 34 мм; длина x ширина шейки 26 x 26 мм.

Описание. *Pororocuta* из Вербис характеризуется очень крупными размерами и мощным архипатом. Берлинский плоскостной архипат в гибкий, редуцированный и отходящий вперед, проксимальный и дистальный метасомы, нижняя плоскостной архипат короткая без метасомы и о очень коротким талондом. По этим особенностям описываемая форма редко отличается от других видов мишениковых перекрест, как *P. aegyptianus* (Geb.), *P. maculata* (Pav. et Thun.), *P. carinata* (Figs.), а также от *P. minor* (San.) и *P. eximia* (Kee et al.).

По размерам и общей морфологии архипаты *Pororocuta* из Вербис обнаруживают некоторое сходство с *P. robusta* из Рань, *P. algeriana* (Arens.), *P. salomonica* (Andr.) и *P. granulata* Куп. Однако эти виды значительно уступают в размерах порорувских архипатов. Кроме того, *P. robusta*, *P. salomonica* и *P. algeriana* имеют более укороченные плоскостные и менее редуцированные предплечье архипаты. Проксимальная плоскостная *P. aegyptianus*, *P. algeriana* и, возможно, *P. granulata* овальная, разделена на две части, как у *Pororocuta* из Вербис, а талонд на *P. robusta* и *P. algeriana* более длинный и отличается по строению.
По морфологии зубов и нижней челюсти их размерам описываемая форма очень напоминает вид P. senyurekii (Ozan.), P. gigantea и P. eldarica. Сходство проявляется в строении плотоядных зубов (сильно развитые премоляры на P4 и тарзона на M1 и отсутствие метаконца на P1) и в отсутствии прорезывания передних премоляров у них добычных суконок, а также в общих размерах.

Следует отметить, что у P. senyurekii и отличие от верхних верхних премоляров у P. gigantea, в верхний плотоядный зуб чуть короче. P. eldarica отличается от нашей формы более выраженным премоляром и укороченным верхним личным зубом, P. gigantea из племени Башкир по размерам и строению зубов почти не отличается от P. gigantea из Варнен. Учитывая это сходство, мы относим P. gigantea из Варнен к P. gigantea.

По-видимому, к P. gigantea следует относить P. eldarica (Beg.) и P. senyurekii (Ozan.). Эти формы незначительно отличаются морфологией в строении зубного аппарата, а также размерами. Наблюдаемые различия, очевидно, должны быть рассмотрены как низкие, а не как индивидуальные или возрастные изменения. У P. eximia, а также у современных видов диких животных, в размерах зубов, степени развития амбулакральных суконок, прорезывании на P4 и тарзона на M1 гораздо больше, чем у названных нами видов P. gigantea.

Геологическое и географическое распространение. а) Средний ортекс (верхний стратиграфический уровень), с. Екатеринодар, Маршал; с. Верхний ортекс; c. Будычак, Катычковский район; в) средний ортекс, Ефремов, Камыш; в) средний ортекс, Крым, Туриция; в) нижний ортекс (в широком смысле), Екатеринодар.

Материалы. Обломки верхней резцовой части с P4 и M1; откалывающие P4, M1, P4 в один экземпляр "stragulatus". Кол. ТПМ № 6 (12 - 16).

Обобщенные замечания. P. gigantea (Schl.) представляет собой форму гигантских размеров, имеющую очень мощный зубной аппарат. В этом отношении она превосходит всех известных ископаемых и современных представителей семейства Nympheidae.

Большая длина верхнего плотоядного зуба и редукция его премоляров, укороченность и особенность строения нижнего плотоядного зуба (отсутствие метаконца, редукция тарзона, наличие бугра на параноде) и ряд других признаков указывают на выскокий уровень специализации средненагатовской P. gigantea по сравнению с известными видами перикокут. Однако следует отметить, что слабая редукция зубов (предкоренных), относительно длинный метабульб на P4, сильно развитый премоляр на P4 и особенности строения ассоциативной кости характеризуют P. gigantea как архичную форму.

По-видимому, P. gigantea, как и все гиганты, была приспособлена к питанию падалью и мясом крупных животных. Но в силу того, что режим питания и условия обитания P. gigantea в целом похожи с другими мелкими перикокутами, она была очень древним видом из группы "средненагатовский" временных пор.

Стратиграфическое распространение P. gigantea (Schl.) P. gigantea впервые была описана Плоссеем (M. Schloesser, 1903) по очень фрагментарным остаткам из нежизненных отложений Китая. Он определяет геологический возраст данной формы как пермический (в широком смысле) Однако до настоящего времени геологический возраст P. gigantea является спорным, так как местонахождение и геология, в котором собраны его остатки, независимо (В. Kurten, 1957).

Куртен (В. Куртен, 1977) указывает, что в Британском музее остатки этой группы находятся в коллекции среди плейстоценовых мелких животных. Вероятно, в связи с этим многие палеонтологи считают, что P. gigantea существовала в Азии от среднего до позднего плейстоцена (F. Pilgrim, 1932; B. Kurten, 1957; Z. Zahn, 1966).

Пилгрим (F. Pilgrim, 1932) описывает из среднезаверенных слоях окаменелостей (зона Tannery-Patagon) Индии остатки крупной гиа и относит их к Crocota gigantea Schl. var. latro. Он отмечает, что эта форма отличается от P. gigantea schl. из Китая длиной меньшими размерами и, по его мнению, ее нужно рассматривать как космическую географическуюразу. Пилгрим считает также, что Crocota gigantea и Crocota gigantea var. latro существовали в одно и то же время. Он рассматривает Crocota gigantea var. latro - Crocota gigantea как один филогенетический вид.

Куртен (B. Kurten, 1957), изучая материалы, описанные Пилгримом (F. Pilgrim, 1931), приходит к выводу, что они не могут быть отнесены к Crocota gigantea Schl., так как большая часть из них принадлежит P. eximia latro, меньшая — к новому виду P. grandidis. Куртен считает, что P. grandidis и P. gigantea существовали в различные структуры геологического времени: P. grandidis — в раннем и среднем плейстоцене, P. gigantea — в позднем плейстоцене.
не. Он, как и Пилгрим, рассматривает P. carinifex - P. grandis - P. gigantea как единую филогенетическую ветвь. Это же мнение подтверждается и Тенкем (H. Tenkem, 1966).

Выводы этих палеонтологов со значительным сомнением и утверждением P. gigantea считают основной и верхней сорта Молдавии, верхнего сорта Камина и среднего сорта Турции представляет большой интерес. Указывают на то, что эта форма характерна не для среднего или верхнего плейстоцена, а для сорта (верхнего плиоцена). Окончательно P. gigantea появляется в конце раннего или в среднем сорте в Центральной Азии. На территории Молдавии и Киргизии часть СССР она встречается с другими азиатскими видами гигантской формы (верхним, туркменским, восточным, водяным, восточным и рядом других). Проникает в конце среднего сорта и просуществовала до конца позднего сорта. Не исключено, что P. gigantea в конце позднего сорта существовала и вместе с P. eximia. Отчего последняя найдена в верхнеюрских отложениях в Гроссоудо (G. Zukow, 1960) и Грабенбахе (M. Pavlov, 1964). Позже эти виды P. gigantea не найдены в Центральной и Восточной Европе. Возможно, что она не появляется в начале территории Молдавии и лишь одним из характерных элементов верхнеюрской фауны в конце-позднего сорта Урал.

Таким образом, выводы Куртен и Тенкема о том, что P. carinifex - P. grandis - P. gigantea представляет одну филогенетическую ветвь, мало вероятны. P. gigantea, как было отмечено, существовала раньше, чем P. grandis, и, по-видимому, между ними отсутствовала родственная связь. Не следует также относить P. gigantea к P. carinifex. Последняя проникает в начальный сорта как очень специализированный вид. P. gigantea, очевидно, связана с рядом примитивных форм с P. tumengurenai. В морфологии и строении нижней челюсти и зубного аппарата этих форм наблюдается определенное сходство. P. tumengurenai - P. gigantea, по всей вероятности, относятся к одной филогенетической ветви, вновь сформировавшейся в конце среднего сорта. Материалы из конца позднего сорта. Но P. tumengurenai представляла собой более ограниченный размер, с массой и вычтенной конечностью. Несколько особенностей строения астрагала выделяют как будто указывают на преимущество P. gigantea.
ее как подрод в пределах рода Orocotia. По его мнению, Peregocotia могла возникнуть в среднем миоцене от генетической формы, близкой к Pogonolleva.

Тенникс (G. Thulin, 1966) выделяет Peregocotia как самостоятельный род, к которому по его мнению относят все виды миоценовых гиен (Piloceenica, P. carnifex, P. tugenensis, P. calaperitensis, P. eximia, P. grandis, P. gigantea). Он считает, что Peregocotia представляет собой отдельную ветвь семейства Hyaenidae, возникшую в среднем миоцене и просуществовавшую до конца плиоцена. Интересно отметить, что Тенникс отрицает родственный связь между Peregocotia, Crocuta и Hyaena. Он допускает, что род Crocuta генетически связан с Lycaena, а род Hyaena с Totitherium.

В своей работе Крусесон-Пейрро и Петер (A. Prescott-Peayre and C. Peters, 1969) рассматривают Hyaena, Crocuta и Peregocotia как самостоятельные эволюционные ветви, которые возникли еще в бурдигале от одного и того же генетического ствола. Он пишет о том, что эти ветви имели общий предок, подтверждается наличием у близкородственных генов (H. preistti) признаков в строении зубов, сближающих их с черепом (отсутствие мезоантикана и короткий талион на M3, массивные премоляры). Как и Тенникс, этот автор считает, что Peregocotia берет свое начало от каких-то примитивных геновидных форм, близких к Pogonolleva.

Следует отметить, что все миоценовые виды гиен, относящиеся к роду Peregocotia, представлены богатыми морфологическими формами, о чем свидетельствует ряд особенностей строения черепа (например, укороченная нейральная область) и зубного аппарата (отсутствие мезоантикана и короткий талион на M3, редуцированный поздний премоляр на M3 и др.). Именно эта природа, в какой-то мере, объясняет, что виды, которые мы видим в составе геновидов, в результате эволюции, появляются в процессе приспособления их к определенному режиму питания. Особенности строения предковых зубов обусловлены морфологическими взаимодействиями с родом Hyaena. Возможно, это объясняет, почему виды, похожие на Peregocotia, о которых говорит Тенникс, имеют большие сходства с Hyaena, а не с Crocuta.

Очевидно, можно согласиться с мнением Тенникса, Крусесон-Пейрро и Петера, что Peregocotia следует выделять в самостоятельный род, предполагающий собой отдельную эволюционную ветвь, возникшую, видимо, еще в раннем миоцене. Однако все миоценовые формы гиен к роду Peregocotia, как делает Тенникс (G. Thulin, 1966), на наш взгляд, неправильно, поскольку эти формы, как P. eximia, P. robusta, P. tugenensis и P. calaperitensis, по сравнению с другими миоценовыми гиенами, относится к Pogonolleva, имеют хорошо выраженный премоляр на M3, но относительно короткий талион на M3. Видимо, перечисленные виды могли бы относиться к другому роду или подроду. Для решения этого вопроса нужно произвести ревизию всех известных миоценовых видов гиен Старого света. При этом важно отметить, что все миоценовые виды гиен относятся к Pogonolleva, в развитии этого рода на протяжении миоцена можно проследить несколько эволюционных линий (рис. 21).

На территории Евразии самые древние остатки гиен известны в среднем миоцене на территории Северной Евразии, относящихся к Pogonolleva aselli. По мнению К. А. Виноградова, Pogonolleva относится к Pogonolleva aselli. Л. К. Габуния рассматривает геологический возраст этой фауны как ранний миоцен или поздний гониан. Pogonolleva характеризуется короткой формой, узкими коронками зубов, слабо развитыми дольчатыми бугорками. Питательные функции развиты слабо; P3 с рудиментарным премоляром, M3 с коротким талионом и без метаантикана. Эти особенности указывают на высокий эволюционный уровень и специализацию Pogonolleva как отдельного рода, а не вида, как отмечает Л. К. Габуния, на значительно более древнюю эволюцию гиен. Он предполагает, что первые ее предшественники могли появиться еще в раннем миоцене.

K. Pogonolleva. По морфологии и строению зубов и других характеристик очень близка Piloceenica Fav. et T. H. из морской фауны Прокопия (Cret., Cret.) (M. Pavlovic и H. G. Tennyson, 1965), из кото-

82

83
из серии низкого синуса Туркм (P. Osnobo, 1655), относящейся к раннему или среднему сармату. Отличия между P. minor и P. carinifex незначительные. У этих форм одинаковы общий профиль зубов, нижний плоский зуб относительно короткий, без металакондона и с очень маленьким талонидом, а преддоходные зубы характеризуются широкими коронками и одинаковой степенью развития добавочных секторов. Однако, P. basseosolomi - P. miocenica - P. carinifex - P. minor характеризует собой хорошо обособленную филогенетическую ветвь, которая охватывает группу сравнительно мелких гиен, обитающих в низовых областях Евразии, начиная с позднего гельвета и до среднего сарматы.

К другим группам относится P. tungurensis из среднемиоценовой фауны Тунг-Гура в Монголии, геологический возраст которой, по-видимому, - поздний турон или ранний сармат. Некоторые P. tungurensis по сравнению с гиенами из группы P. basseosolomi - P. minor более эволюционированы. Однако относительно длинные плоские зубы, слабая редукция преддоходных зубов характеризуют ее как архаичную форму. Вероятно, P. tungurensis через ряд промежуточных форм связана с P. gigantea. Последняя известна из отложений среднего плеистоцена (в широком смысле) Памира, а на территории Европы - из отложений среднего и верхнего сарматы. P. gigantea очень близка относным нам в ее синэкзимках P. edarica и P. senyureki.

По всей вероятности, P. tungurensis - P. gigantea - P. senyureki и P. edarica представляет собой группу гиен, генетически связанных между собой, и образует другую филогенетическую ветвь. Эта ветвь отличается очень крупными и высокоэффективными органами, которые появились в Центральной Азии в среднем миоцене и проникли в Европу в конце среднего сарматы.

В эволюции этой группы гиен наблюдается увеличение обхвата размеров, удлинение верхнего плоского зуба, редукция его внутреннего выступа (протока), а также металлакона и талонида на M1, расширение коронки и развитие добавочных секторов на преддоходных зубах. Следует отметить, что признаки, характерные для рода Crocuta, у гиен этой группы резко выражены, чем у форм из группы P. basseosolomi - P. minor.

Близко, P. tungurensis - P. gigantea - P. senyureki - P. edarica и P. basseosolomi - P. miocenica - P. carinifex - P. minor представляют две самостоятельные ветви, отделяющиеся от оболее крупных еще в раннем миоцене и развивающихся параллельно в различных областях Евразии.

На протяжении мелового периода в южных районах Евразии и в северной Африке получили развитие группы гиен, по ряду морфологических признаков различающиеся от вышеперечисленных групп. Одним из наиболее ранних ее представителей является P. robusta из среднего сарматы Ирана, которая очень близка к P. algeriensis и P. salamonicus. Вероятно, между этими формами существует родственная связь, что указывает на их происхождение из одного источника.

Рис. 21. Схема филогенетического развития рода Ferocata
плоских зубов, расположенных на M₃, расширение коронок, развитие дольчатых бугорков и слабая редукция предкоренных зубов. Однако рассматриваемые формы менее специализированы по сравнению с гиеными из группы *P. tanguenensis* и *P. gigantea* и *P. abessinica* - *P. raimondi*, на что указывают слабая редукция предкоренных зубов, наличие длинного талонда на M₂ и развитый протокон на P⁴. В связи с этим они кажутся более примитивными по сравнению с гиеными из вышеуказанных групп и имеют более выраженные, чем у других мозковых форм, проекции признаков, характерных для рода *Huna* и *Crocuta*. Последнее отмечено еще Аранбюром (C. Arambourg, 1956). Широко известны из гиппомонавтов фауны Евразии *P. eximia* и *P. variabilis* по особенностям строения черепа, нижней челюсти и зубного аппарата, обнаружены в гиеных из группы *P. robusta*. Не исключено, что они относятся к последнему из постепенного сарматского.

Наиболее ясно систематическое положение *Allohyena kadidii* из *Homo sapiens* и *A. eximia*, описанных Кретцом (W. Kretzoi, 1938) из гиппомонавтов фауны Вентрина. Эти формы могут значительно отличаться между собой и, очевидно, представляют один вид. Кретцом отмечается присутствие у *Allohyena kadidii* M₂, но если это не учитывать, то виллардоны и тангуэвины по особенностям строения зубов занимают промежуточное положение между *P. eximia* и *P. robusta* (рис. 21).

СЕМЕЙСТВО CARNIVORA GRAY, 1821
ПОДСЕМЕЙСТВО HAPALOCyoninae GILL, 1872

Род *Saananosmilus* Kretzoi, 1939
Saananosmilus piveiteal (Ozanan)

Tableau, 11, 186-186; *Tableau*, 11, 21, таблицы, приведенные в составе *Africanus* *Jouberti* et *Craufurd* et *Fretta*., 1946, 5, 5.
Meganodon piveiteal (Ozanan) *Villière*, 1959

Описание. Имеющийся в нашей коллекции обломок верхней молярности (рис. 22, а) принадлежит молодому индивидууму. Обращает
И3 клинообразен, с верхушкой, загнутой назад, и сильно сжат с бо́ков. Латеральный и медиальный края ограничены острыми мелкозаузубренными гребнями. По бо́ковым поверхностям наружной и внутренней сторон имеется воротничок, представленный слоем зернистой полоской, идущей вдоль коронки в виде крыльев.

С (или). Лежащий в чашечке молочный клык обозначает че́рную альвеоларную щель, так что нельзя судить о его длине. Клык очень утонченный, передний и задний край острые и тонко заузубренные. Передне-задний x медиально-латеральный перепечень 14,5 x 64 мм.

В коллекции имеется один изолированный постоянный клык (рис. 22, a), отличающийся своеобразным строением. Он плоский, тонкий, с мало заузубренными и зазубренными краями. По его бо́ковым поверхностям тянется небольшое продольное бороздки. На́ружный край придает клыку сильно изогнутый вид. Кривизна вну́треннего края меньше наружной, а кончик клыка почти прямой.

Р3 полностью редуцирован. Диаметр (C - Р3) очень короткий (около 30 мм).

Р3 с небольшим, но видимым корнем. Состоит из трех тонких и острых лопастей, хорошо отделенных друг от друга. Средняя лопасть несколько выше остальных, имеет слабо развитый парон. Задняя часть зуба перерезается с наружной стороны передним краем P4.

Р4 имеет форму длинного и тонкого лезвия, состоящего из четырёх лопастей, четко разделенных с наружной стороны желобками. Внутренний выступ (протокон) полностью редуцирован. Передняя часть имеется узкий и относительно высокий столь - эпима́рия. Амельон выше па喇сти и метасти. Последний шире и чуть ниже эпимы́ни и па喇сти, наружная стенка вогнута. На́ружная сторона параста и амельона выпукла.

В коллекции имеется один сильно стертый P3 (рис. 23). Особенно на́равление поверхности стирания зуба. С внутренней стороны зуб стерт до осно́вания, с наружной - только на 2/3 высоты коронки. Таким образом, поверхность отверстия имеет почти вертикальный наклон. Корна мочевидные, длинные, плоские, особенно задняя. У заднего края переднего корытца определяется не большое тонкое корыто. Позади P4 имеется мелкозаузубренная альвеола, утапливающая на наличие сильно редуцированного M1. Судя по альвеоле, этот зуб имел узкую коронку и был расположен параллельно к оси че́шуй. Задняя часть его была оттакнута внутрь и назад.

Нижние зубы. Нижний клык (рис. 24, в) остры и сжат с бо́ков, он имеет форму резца с краями в виде тонкого заузубренного ребра. С загнутой назад верхушкой и сильно редуцирован. По осно́ванию внутренней, латеральной и медиальной сторон встречается слабо выраженные прерывистые воротники.

P4 (рис. 24, a, c) овальное стертый с узкой, высокой коронкой, состоящей из трех высоких и тонких лопастей, хорошо разделенных с наружной и внутренней сторон желобками. Задняя лопасть шире и выше передней. У ее заднего края имеется столь, прилегающий к внутренней стороне формы стертого гребня. Передняя лопасть достигает почти половины высоты центральной лопасти и у ее основания имеется мелкий бугорок. Воротничок в виде...
дя слабо выраженной щеткой опоясывает коронку о передней и задней сторон. Коронка овальная, выпуклая, а внутри слабо вогнутая. Авт имеет перепончатый облик (allura palm). Эмаль верхних и нижних зубов мелкокомбинированный, а края зубов зауерчен.

Таблица 13

<table>
<thead>
<tr>
<th>Промеры верхних и нижних зубов</th>
<th>3. piveani</th>
<th>Кашкы, Махачкала</th>
</tr>
</thead>
<tbody>
<tr>
<td>Спередне-задний × медиально-латеральный перерезки</td>
<td>19,0 × 7,0</td>
<td>19,0 × 7,0</td>
</tr>
<tr>
<td>Длина × ширина</td>
<td>7,0 × 5,0</td>
<td>7,0 × 5,0</td>
</tr>
<tr>
<td>Длина</td>
<td>6,5 × 3,5</td>
<td>6,5 × 3,5</td>
</tr>
<tr>
<td>Длина (выход)</td>
<td>7,0; 6,5 × 4,0; 4,5</td>
<td>7,0; 6,5 × 4,0; 4,5</td>
</tr>
</tbody>
</table>

Из костей посткраниального скелета в наим. коллекции имеются ватернальная и метаэпифизная (MC IV) кости.

Astroagalus относительно широкий и короткий. Белая корочная и слабо вогнутая внутри - её длина почти равна ширина. Бюки низкие, широкие, несимметричные и разделены неглубокой бороздкой. Наружный слой более развит, чем внутренний. У основания низкое крыло наруженного слоя имеется аппендикс, в котором при сильном сжатии головеносного сустава упирается выступ переднего крыла большой коренной кости. Это приносоплывное к торможению, снабженное, как отмечает В.И.Гриамова (1960), только у кандид и зайца. Внутренняя пятка фасетка по длине вдвое больше, чем по ширине. Она соединяется с надвздохной фасеткой и ее внутренним выступом. Наружная пятка фасетка по сравнению с внутренней более расположена в поперечном направлении и соединяется с низкой вмятиной. Межреберная бороздка неглубокая. Полная длина 35 мм; полная ширина 20 мм; длина × ширина 21 мм; длина × ширина 21 × 19 мм; длина × ширина 21 мм × 19 мм. По особенностям строения ватернальной кости среднезерагальных насекомых ласки некоторые считают черты с ватернальной костью росомах, енотовидной собаки, а также усач.

MC IV короткий и массивный. Верхняя суставная поверхность вогнутая, фасетка для сочленения с MC V длинная, выгнутая вдоль латеральной стороны. Длина 56 мм; передне-задний × медиально-латеральный внутренний конец 14,5 × 11 мм, то же дистального конца II × 12 мм.

Сравнение. Сансамелийус из среднезерагальных отложений Мадагаскара по особенностям строения черепа, зубов и клюков характеризуется как очень эволюционированный вид. В отличие от S. belvidense из среднего миоцен (L. G. M. S. I. 1957, 1961) описываемая форма имеет более крупные размеры, укороченную и широкую форму, крупные резцы (I^2), редуцированные плюрализированные зубы (P^2), M^1 и плюральные, а также небная клюк и небный камень с небольшой скуловой ветвью альвеолярного края у P^2. По размерам среднезерагальных насекомых сансамелийус сближается с S. crepuscularis (Albanaeis) jordani, известным по очень фрагментарным остаткам из среднезерагальных отложений Франции (L. G. M. S. I. 1963), но отличается от него более крупными, более выступающими, укороченными предгрудными и удилинными шлем-образными зубами. У сансамелийуса насекомых зернения и складки передних предгрудных зубов более редуцированы и зубы терминальный характер для среднезерагальных насекомых с накладенными зубами (allura palm), что указывает на их более оптималную систему.
Ниш (H.P. Villalba de et al. Cruenspont-Pairo, 1943), так как он не строения зубов и нижней челюсти почти не отличается от сан-саномилуса среднего сармате Молдания, среднего сармате Турции. Европейские (J. Viret, 1951) и Гинсбург (L. Ginsburg, 1961) отмечали, что различия между Sanamomilus и Albitomilus очень незначительные. В связи с этим они считают Albitomilus склонным родом Sanamomilus. Эти авторы рассматривают S. palmidenе как более примитивную форму, характерную для гельвета, который, по их мнению, являлся промежуточной формой для S. Textilis, существовавшей в токмучном времени. Следует отметить, что S. Textilis из среднего сармате Молдания, среднего сармате Турции и венецианской Испании редко отличается от S. palmidenе и сопровождается S. m. Textilis. Но S. Textilis нельзя отождествлять с последней, так как он более специализирован. В-вхолку, S. m. Textilis является формой, от которой происходит S. Textilis.

Геологическое и географическое распространение. a) Средний сармат, нижний стратиграфический уровень; с. Камча, Новокостанский район; b) венецианский ярус, Венеция, Испания; в) средний сармат, Турция.

1. Основные строения корней Sanamomilus. Sanamomilus — новообразованный представитель семейства Ptilidae с новым эволюционным строением, остатки которого очень редко встречаются в слоях плиоценовых отложений. Большинство палеонтологов (P. Skrastin, 1959; H. Pichol, 1981; W. Meisner, 1979; M. Boule, 1981; H. Grönhoefer, 1982; и др.) относили его к роду Machairadina и рассматривали как предковую форму для позднеизвестных плейстоценовых миляраев. Описание родов Sanamomilus и Sanamomilus (J. Viret, 1951) впервые отметили, что санамилусы из Северной Америки и Северной Азии представляют собой очень специализированные формы с плоскими, как у Sanamomilus, клыками и их нужно отделять от Machairadinae. Гинсбург (L. Ginsburg, 1961), изучая остатки S. palmidenе из Северной Америки, указывает на ряд характерных особенностей в строении черепов и зубов (развитие алюксондном канала, сильно развитое скуловое отверстие, укороченные нижние зубы и наличие зубов в верхних чешуях), которые характеризуют его как высокоуровневую форму и в то же время как примитивную санамилусовую. Общий тип строения черепа обладает санамилусовыми остиами и санамилусовыми миляраевыми. Пресаджогенный характер, описанный Гинсбургом (L. Ginsburg, 1961), относится к Sanamomilus к трибу Sanamomilini и рассматривает его как особую филогенетическую ветвь подсемейства Nickavinae.

Сложенная часть санамилусов известна из гельветских отложений Северной Америки и отнесена к S. palmidenе. Последний, видимо, генетически связан с Sanamomilus, из среднего сармате Молдания, среднего сармате Турции. Указанная связь санамилусов — характерные черты позднеизвестных форм среднего сармате. Один из последних представителей рода Sanamomilus является S. palmidenе, который, очевидно, произошел от S. Textilis. S. palmidenе представляет собой группу, специализированную форму рода Sanamomilus и принадлежит к числу типичных элементов средневосточно-евразийской миграционной формы венецианского типа. Таким образом, можно отметить, что в Европе санамилусовыми существовали от гельвета до конца среднего сармате. В тропических водах этих санамилусовых конец расширяется на волжский верхний клык, укорачивание плоских зубов, редукция преддверных зубов и нижних клыков, укорочение и развитие верхней части черепа, развитие высоты нижней челюсти и др. В среднем сармате санамилусовыми существовали вместе с миляраевыми. Следует отметить, что в санамилусовых очень близкими братскими, известными из среднего сармате в северной Америке (B. Schulte, B. Schulte, J. Martin, 1970) и в Европе. Однако его особенности пока установлено только для более поздних сан-
буфофиелас (B. fricki и B. morrisi), но не известна для ряда форм — B. whitfordii и B. esborni. Североамериканские барсукофелисы (особенно поздние виды) по сравнению с южнороссийскими самцовыми являются более воловообразными формами, но у них редуцированы передние когти, в свою очередь связанные с более развитыми и воловообразными когтями у B. morrisi и B. whitfordii. Североамериканский вид отличается от S. pinnatus лишь более крупными размерами. В результате, S. pinnatus является формой, от которой произошли североамериканские барсукофелисы.

Б. Щуц, М. Щуц и Д. Мартино относят S. pinnatus к роду Baryurofelis. Пока это очень трудно решить, так как имеющиеся материалы позволяют выяснить, имеют ли эти виды североамериканские формы североамериканские барсукофелисы.

2. К энтомологии Samaanobus pinnatus. Среднеамериканский североамериканский пегаргонт представляет собой саблезубого кота средних размеров, с тонкими и длинными когтями, гибкими и короткими конечностями, особенно строения ударного аппарата (например, резца передних когтей). Саблезубый кот средних размеров характеризует среднеамериканский средний период, когда североамериканские виды исчезли.

Б. Щуц, М. Щуц и Д. Мартино относят S. pinnatus к роду Baryurofelis. Пока это очень трудно решить, так как имеющиеся материалы позволяют выяснить, имеют ли эти виды североамериканские формы североамериканские барсукофелисы.
Механика, а также особенности строения зубной, седренной и верховой костей свидетельствуют о том, что саманосмилусы были стопоходящими животными, приспособленными к жизни на деревьях. Судя по строению костей конечностей, имевшихся в нашей коллекции, выделялись черты приспособления были свойственны и среднесарматским саманосмилусам, а некоторые из них были даже резче выражены, чем у S. palmipes. Очевидно, среднесарматские саманосмилусы обитали вблизи речных и озерных водоемов, где скрывались среди густой древесной растительности и подстерегали свою добычу.

Род Machairodus Kaup, 1833
Machairodus Laskarevi Langu sp. nov.
Табл. III, фиг. 3–4; табл. VII, фиг. 1–4; табл. промеров 14–16
Bashkhiprotodous sp.; Дунгу А. Е., 1986, 1988
Голотип. Нижняя челюсть с разрушенными восходящими ветвями позади M1 (рис. 25, табл. 6, фиг. 1), кол. ТПИ № 1 (2257). Средний сармат, нижний стратиграфический уровень; с. Колга, Новосибирский район.

Рис. 26. Machairodus Laskarevi Langu sp. nov. Правая ветвь нижней челюсти с P1; P3 = M1 (снаружи)

Естественно, саблезубых кисти средних размеров, нижняя челюсть относительно короткая и высокая, но массивная и слабо расширяется в высоту позади клыка. Расширение отдель очень узкий края, равный его на уровне наружного альвеолярного края клыка чуть больше длины M1. Резцы мелкие и не приподняты выше уровня M1. I2 пришит к клыку. Нижние клыки очень крупные, передне-задний диаметр клыка почти равен длине P3. Подбородочная выступ отсутствует. Симфиз очень короткий и составляет почти 1/3 длины зубного ряда (P3 = M1). Сохраняется, но не всегда, P2 и отделяет

Рис. 27. Machairodus Laskarevi Langu sp. nov. Фрагмент правой ветви нижней челюсти с M1 (снаружи)

Экз. 293
<table>
<thead>
<tr>
<th>Промеры нижней челости</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Промеры, мм</td>
<td>М. лакаарцвей</td>
</tr>
<tr>
<td>Высота челюсти позади клина</td>
<td>45,0; 50,0</td>
</tr>
<tr>
<td>Высота челюсти впереди P₃</td>
<td>37,0</td>
</tr>
<tr>
<td>Высота челюсти позади M₂</td>
<td>40,0</td>
</tr>
<tr>
<td>Ширина челюсти в области клинов</td>
<td>35,0</td>
</tr>
<tr>
<td>Длина диастемы (C - P₃)</td>
<td>29,0; 39,0</td>
</tr>
<tr>
<td>Ширина ветви в области P₄</td>
<td>78,0; 79,0</td>
</tr>
</tbody>
</table>

сг от P₃ диастемой. P₃ слабо редуцирован; отношение длины P₃ к длине P₄ составляет 83%.

M₂ относительно длинный и узкий с хорошо развитым м-тако- видом. Длина зубного ряда (P₃ - M₂) 67 - 68 мм. Дистальные отделы конечности массивные и относительно длинные.

Опишем нижнюю челюсть (рис. 25 - 27). Горизонтальные ветви массивные, укороченные и относительно звуковые. Наружная сторона ветви слабо выпукла, а внутренняя — гладкая. Наличие толщина ветви 20 мкм. Массетерные ямы глубокие и широкие, передний край их вытянут вперед до уровня середины M₂. На наружной стороне имеется два ментальных отверстия, расположенных ниже середины горизонтальной ветви. Первое, более крупное из них находится на уровне переднего края P₃. Его край резко очерчен, а по его проникают многочисленные мелкими отверстиями и каналами. Второе отверстие значительно уступает по размерам первому и расположено на уровне заднего края P₃. Наружный край горизонтальной ветви прямой и до уровня середины P₃ имеет вид расширенной площадки, а свод приобретает округлую форму. Верхняя овальнообращенная ветвь нижней челюсти средней-самарского маляроведа. Она очень узкая, резко приподнята и сращена с горизонтальной ветвью почти прямо углом. Ширина резцового отдела около 35 мм. Резцы и клыки расположены на одном уровне, не выступают вперед, но поставлены почти прямыми. Расположение их их отделена от горизонтальной ветви прямостоячими углями. Передняя поверхность ее пронизана многочисленными мелкими отверстиями, служащими, по-видимому, каналами для кровеносных сосудов. Горизонтальные ветви позади клина резко расширяются кверху и начинаются в 45 - 50 мм; впереди P₃ 36 - 38 мм. Нагрудный и очень короткий синус начинается на уровне заднего края моляра и образует носовой прямой угол с горизонтальной ветвью. Длина его около 18 мм. Подбородочный выступ (арко- вые амплифуэи) отсутствуют. Диастema относительно короткая с гребенчатыми краями. Длина ее почти равна половине зубного ряда (P₃ - M₂). В области диастемы ширина суммируется и края ее с наружной стороны вогнутые.

Резцы очень мелкие, слабо ошатые с боков и не проникают ниже уровня коренных зубов. I₃ присутствует в клинку. Резцовый аппарат среднесамарского маляроведа, очевидно, был слабым. Клыки крупные, имеют треугольно-овалное, а ниже альвеоларного края овальное очертание. Они значительно проникают выше уровня заднего края M₄. Передний и задний края только зазубрены. Клыки расположены под углом к продольной оси нижней челюсти. Задний край клина оттесняет внутрь.

Коренные зубы. Следует отметить присутствие у м. лакаарцвей P₄, имеющего форму очень маленького конуса (длина и ширина 2,5 х 2,5 мм). Он отделен от P₃ диастемой длиной около 15 мм. На некоторых ветвях нижней челюсти P₂ отсутствует. По-видимому, этот признак не постоянный и не следует приводить ему важное значение.

P₃ слабо редуцирован. Отношение его по длине к P₄ составляет около 83 - 85%. Передний доспеховый бугорок хорошо выражен, но значительно слабее развит, чем задний. На задней стороне имеется хорошо развитый короткий, который расширяет ся и образует относительно круглую пяту. Средняя часть пяты заметна тенденция к образованию второго заднего доспехового бугорка.

P₄ по строению напоминает P₃, но значительно крупнее. Лобовые бугорки у P₄ развиты сильно, причем в равной степени как на передней, так и на задней сторонах. Воротничок направлен в такой же степени, как и на P₃. Верхушка главного конуса на P₃ и P₄ слабо наклонена назад.

M₃ имеет узкую и длинную коронку. Отношение его по длине к ряду P₃ - M₃ составляет 47 - 42%. Циановид и протоконди виден почти одинаковый длину и разделены с наружной стороны глубокой щелью. Протокондид значительно выше циановида и наложен назад. Передняя часть циановида сильно оттеснена внутрь. 98
<table>
<thead>
<tr>
<th>Промеры пальцев I и II фаланг</th>
<th>Промеры, мм</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина по наружной поверхности</td>
<td>45,0</td>
<td>27,5; 30,0</td>
<td></td>
</tr>
<tr>
<td>Передний край × медиально-латеральный поперечники проксимального конца</td>
<td>19,5 × 16,0</td>
<td>14,5; 16,0 × 7,0; 9,5</td>
<td></td>
</tr>
<tr>
<td>Передний край × медиально-латеральный поперечники дистального конца</td>
<td>11,0 × 14,5</td>
<td>10,0; 11,0 × 3,0; 14,0</td>
<td></td>
</tr>
</tbody>
</table>

Медиально-латеральный поперечник в середине дистального фаланга 15,0

По размерам и массе костей конечности \(M. laekarevi \) относятся к \(M. arpanius \) Kaup и \(M. orientalis \) Orlov, но немного уступают им.

Сравнение. Крупные размеры, особенностями строения ножек и пальцев резко отличают среднедревесные махарадусов от других видов, таких как \(M. hungaricus \) Kort, \(M. oggygia \) Kaup, \(M. schlosseri \) Weit, \(M. orientalis \) (Kittl), известных из гипсогеновской формации левобережной части Баварии (Kaup, 1833; Weit, 1888; Kittl, 1886; Kormor, 1913; Pavlov, 1914; I.A. Xomenko, 1914; A.A. Klees, 1915; Schlosser, 1916; N. Retzoi, 1920; A. P. Rabinow, 1920; P. Pilgrim, 1931; I. Simonsson, 1938).

Перечисленные виды представляют собой группу относимых мелких саблевых костей, широко распространенных в позднем миоцене и раннем плюоцене в Европе. Филогенез и систематическое положение этих форм неясны, но по сравнению с \(M. laekarevi \) они имеют более развитые проксимальные зоны (P3) и ножки костей, более крупные ости и широкий резервуар брюшной части ножек, а также более стройные конечности. По этим же особенностям \(M. laekarevi \) отличается от других форм, как

* Ключев М. предлагает \(M. oggygia \), \(M. schlosseri \) и \(M. hungaricus \) как синонимы \(M. orientalis \) Kittl, P. Pilgrim, 1931, относит к новому роду Paraschirodus со типовым видом \(P. orientalis \) (Kittl).
M. indicus Kret., M. pilgrim Kret. и M. maximiliani Zdan. (M. Kret- sol, 1929; G. Pilgrim, 1934); Zdan, 1929).

Теоретическое и географическое распространение. Средний сармат, низинный тергрографический уровень; с. Балка, Новоафриканский район.

Материалы. Нижняя челюсть с обломанными восходящими ветвями, недоложная часть нижней челюсти из M. laskaevi. Материалы из среднемезокарпа в виде скелетных остатков, обломков черепов и зубов, найденных в разных местах. Материалы представлены в виде скелетных остатков, обломков черепов и зубов, найденных в разных местах.

Замечания. M. laskaevi лазареви представляет собой обладающую развитой нижней частью зуба средних размеров, нижней частью, развитой нижней частью и др. M. laskaevi лазареви представляет собой обладающую развитой нижней частью зуба средних размеров, нижней частью, развитой нижней частью и др. Нижняя часть зуба средних размеров, обладающую развитой нижней частью зуба средних размеров, низшая часть зуба средних размеров, низкая часть форм K. laskaevi называется K. laskaevi в среднем сармате. К сожалению, мы не можем сказать, что K. laskaevi в среднем сармате представляет собой обладающую развитой нижней частью зуба средних размеров, низшая часть зуба средних размеров, низкая часть форм K. laskaevi называется K. laskaevi в среднем сармате. К сожалению, мы не можем сказать, что K. laskaevi в среднем сармате представляет собой обладающую развитой нижней частью зуба средних размеров, низкая часть форм K. laskaevi называется K. laskaevi в среднем сармате. К сожалению, мы не можем сказать, что K. laskaevi в среднем сармате представляет собой обладающую развитой нижней частью зуба средних размеров, низшая часть форм K. laskaevi называется K. laskaevi в среднем сарма...
о том, что M. lanceolata обладала укороченной и в то же время узкой мордой. Возможно, это было связано с необходимостью захватывать удерживают добычу.

Вместе с тем разовый аппарат у M. lanceolata был слабым и, по-видимому, не мог служить для удержания и перетаскивания крупной добычи. Мягкие нижние клыки и мягкие размеры резцов указывают на то, что разовый аппарат среднесахарского макро- рода был ослаблен в основном для разрывания и прижимания добычи.

Существенно, что у некоторых особей с редкими нижними клыками, принимая формы разовых резцов, происходит расширение разового отдела, увеличение резцов и верхних клыков. Это позволяет им удерживать и перетаскивать добычу.

Рельеф нижней челюсти указывает на сильную чешуйчатую мускулатуру M. lanceolata. При небольших размерах он имеет очень мощные и сильные конечности. По всей вероятности, среднесахарские макро- роды охотились на крупных травоядных животных. Они могли врезать прямой натянутый на жертву и рвать ее, а затем преследовать и уничтожать.

ПОДСЕМЕЙСТВО BIMBALEMA TRUEBBART, 1865

Род Pseudaleurus Gervais, 1844 - 1852
Pseudaleurus (Schisailurus) turmaeensis (Hoernes)

Табл. IX, fig.1, 2; tabl. промежуточных 17

Описание. Нижняя челюсть (рис. 28, а, б, в). Имеющийся обломок правой ветви нижней челюсти позволяет отметить некоторые особенности ее строения. Челюсть относительно низкая и короткая. Нижний край прямой и слегка сжат в медиально-латеральном направлении. Наружная сторона ниже альвеолярного края, скульптура - гладкая. Высота вершины P3 13,5 мм, посадки M1-14 мм, нижняя точка толщина 8 мм. Сходна на то, что нижняя нижняя, она имеет мясистый вид. На наружной стороне имеются две ментальные отверстия: передние P3 и на переднем крае P3. Массетерная язва глубокая и далеко отступает вперед, передний край ее находится на уровне проектировки M1.

P2 сильно редуцирован, однокрылой и имеет форму мелкого конуса, с верхушкой, оттянутой вперед и наружу. Между C, P2 и P3 находятся несколько диастемы (2 - 3 мм). У P3
Таблица 17

<table>
<thead>
<tr>
<th>Промеры нижних коренных зубов и нижней челюсти</th>
<th>Pseudaelurus turmaeensis (Hoernes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Промеры, мм</td>
<td>Гастауль де Никола</td>
</tr>
<tr>
<td>Калфа</td>
<td>Молдая</td>
</tr>
<tr>
<td>P₂</td>
<td>Длина</td>
</tr>
<tr>
<td>Ширина</td>
<td>1,6</td>
</tr>
<tr>
<td>P₃</td>
<td>Длина</td>
</tr>
<tr>
<td>Ширина</td>
<td>3,6</td>
</tr>
<tr>
<td>Высота</td>
<td>5,0</td>
</tr>
<tr>
<td>P₄</td>
<td>Длина</td>
</tr>
<tr>
<td>Ширина</td>
<td>4,5</td>
</tr>
<tr>
<td>Высота</td>
<td>6,8</td>
</tr>
<tr>
<td>M₁</td>
<td>Длина</td>
</tr>
<tr>
<td>Ширина</td>
<td>5,0</td>
</tr>
<tr>
<td>Высота</td>
<td>-</td>
</tr>
<tr>
<td>P₁ - M₁</td>
<td>32,0</td>
</tr>
<tr>
<td>P₃ - M₁</td>
<td>27,0</td>
</tr>
<tr>
<td>Высота челюсти при M₁</td>
<td>13,0</td>
</tr>
<tr>
<td>**Толщина челюсти под M₁</td>
<td>8,0</td>
</tr>
</tbody>
</table>

Размеры и сильно редуцированными метакондом и тагиолам на M₁. Следует отметить, что среднесарматский *Pseudaelurus* ближе к *P. turmaeensis* из валлесских отложений Валлес-Пенедес Испании (Cruasfont-Paire, 1952). Между этими формами не наблюдается различий в строении и морфологии зубов и нижней челюсти, что позволяет нам отметить среднесарматскую форму в Молдавии к *Pseudaelurus turmaeensis*. В среднем сармате Молдавии, как в валлесских отложениях Испании, *P. turmaeensis* встречается вместе с древнейшими окаменелостями гиппархидовой фауны.

Геологическое и географическое распространение. a) Средний миоцен: Испания (Лузианы), Франция (Ла-Граи-Сан-Альбайя), ФР (Восточный Винтергейф), Австрия (Гордон), Чехословакия (Нейдорф). b) Верхний миоцен: валлесский ярус, Валлес-Пенедес (Гастауль де Никола) Испания. c) Средний сармат, нижний стратиграфический уровень; с. Калфа, Новосибирск, район.

Материал. Правая ветвь нижней челюсти с P₂ - M₃; обломок нижней челюсти с P₂ и P₃, кол. ТПП Я 1 (2270 - 2272).

Замечание. Лем (1950), описывая остовки мезозойских миоценовых моллюсков Германии, использовал формулу, отражающую особенности строения зубов и уровень эволюционного развития. В свою формулу Лем включает следующие условные обозначения:

- присутствие M₂;
- присутствие моликулы на M₁;
- образование на M₁ отсутствует;
- маленькая длина M₁;
- высота P₄ небольшая;
- высота P₃ небольшая;
- высота P₂ небольшая;
- P₂ с двумя разделенными корнями;
- присутствует P₃;
- присутствует M₁;
- M₁ имеет среднюю длину;
- P₃ - корни P₂ сужены;
- P₂ с одним корнем.

Крусафонт-Паиро (M., Cruasfont-Paire, 1952) использует эту формулу при описании остатков *P. turmaeensis* из верхнего мицена Испании. Он добавил к формуле еще два условных обозначения: a - талонид хорошо развит; n - талонид рудиментарный. Для *P. turmaeensis* из Валлес-Пенедес Крусафонт-Паиро приводит формулу:

| a b c d e f g h | А б с д б г н |

Особенности строения нижних зубов *P. turmaeensis* из среднего сармата Молдавии могут быть выражены формулой:

| a b с d b г н | А б с д б г н |

Сравнивая указанные формулы, видим, что среднесарматский *P. turmaeensis* мало отличается от *P. turmaeensis* из Валлес-Пенедес. Единственное отличие заключается в том, что у среднесарматской формы талонид на **M₁ резко выражено по сравнению с исходной формой. Отсутствие M₂, P₂, редуцированный метакондом и**

106
талониды на M_1, однорядной P_2, значительная высота предкоренных зубов и ряд других признаков характеризуют среднеармяковский Pseudaelurus как высоко эволюционированный вид по сравнению со среднекаменноугольными формами. Ihre (J.Viret, 1951) и Ваун (C.Beaumont, 1956) отмечают большое сходство между P. turonianus и Felis atica. Они допускают родственные связи между ними и происхождение P. atica от P. turonianus. При сравнении среднекаменноугольного P. turonianus с P. atica из морфологической гиперармовой фауны Тарбала (A. Kellner, 1929) наблюдается определенное сходство в строении и размерах зубов. Однако у P. turonianus в отличие от Felis atica присутствуют P_2, имеется хорошо выраженный метатонд и талонид на M_1, предкоренные зубы имеют более низкие и узкие коронки. Не исключено, что Felis atica берет свое начало от P. turonianus, хотя некоторые палеонтологи приравнивают к нему M. (McCrone-Porter et S. Aguire, 1972).

P. turonianus в основном характерен для архео-говской фауны среднего мицелена, а также среднекаменноугольной фауны валлерейского типа. Felis atica обладает морфологической особенностью семейства Felidae, по размеру близкий к современноному Felis catus - современному коту. Особенности строения нижней челюсти и зубов позволяют утверждать о его близком родстве с современной."
сравнению с среднесарматским Pseudaelurus представляет собой более эллипсоидную форму, на что указывают отсутствие та-
клонки, большая степень редукции протоконика и метаконика на M_1 и ряд других признаков в строении нижней челюсти.

Вероятно, Pseudaelurus из с.Иосеево является новым видом, близким к Prionoides и, возможно, предковой формой для M. major.

Относительно образа жизни этого хищника трудно что-либо отметить. Видимо, эти крупные хищники, которые по размерам бы-
ли похожи на современного льва, жили в обитателях пой-
менных лесов, зарослей хвойных и речных пойм, где сходи-
лись на оленей, бизонов, волков и других копытных.

Геологическое и географическое распространение. Средний сармат, с.Иосеево, Анапский район, Одесская область, УССР.
Материал. Фрагмент правой ветви нижней челюсти с M_1 и об-
ломок P_4. Кол. МТИ, музей им.И.И. и А.П.Павловых, № 34.

Род Metalurus Zdanovy, 1924
Metalurus pumil (Osnabrug)
Табл. IX, фиг. 4-6; табл. промеров 18 и 19
Feijsi pumil Osnabrug, F. Zdanovy, 1965

Описание. Нижняя челюсть. В нашей коллекции имеется прав-
вая ветвь нижней челюсти с молочными P_4, P_3 и P_2. Ветвь ос-
ломана впереди клыка и выше суставного отростка. Тело челюсти
короткое, низкое и угловатое. Нижний край окруженный, пода-
ды M_1, вогнутый и принимает форму расположенной площадки.Боковые
поверхности плоские. На наружной стороне имеются два менталь-
ных отростка: на уровне переднего края P_3 и переднего P_4. По-
зади клыка челюсть резко увеличивается по высоте, что, очеви-
денно, связано с развитием верхних клыков. Высота ветви перед
клыка 23 мм, а на уровне заднего края M_1 17-18 мм. Диастema
(С-C) короткий, равен длине P_3. Между P_4 и P_2 имеется некото-
рая разработка формы альвеол, указывающая на присутствие
P_2, Судя по размерам альвеол, P_1 был одноконечным, очень
редуцированным и, видимо, рано выпавшим. Диастема между P_4 и
P_3 около 4 мм. Угловая отросток отграничен внутренней и наружной
связанной с угловой отростком резко выраженной гребешками.Сус-
тавной отросток резко отграничен наружной и внутренней сторон резко
выраженными гребешками.Отношение ветви к угловому отростку располагается низко.

Рис. 30. Metalurus pumil (Osnabrug): а - верхний клык,
о - нижние P_3 и P_4

Массетерная ямка глубокая и широкая, с пятынутым до уровня се-
редины протоконика M_1 передним краем.

Верхний клык (рис. 30, а) овальный, высокий, заостренный и равномерно длинный, хотя и не такой плоский, как у M.
quadriodus. Передний и задний край не угловаты. На жеватель-
ной стороне чуть выше альвеолярного края имеется слабо выра-
женный воротник. По размерам и форме напоминает клык Pae-
nialurus quadriodontus.

Нижние зузы. P_3 и P_4 имеют длинные, узкие и высокие ко-
рышки. На заднем крае P_3 наблюдается хорошо развитый добо-
вочечный сустав. На передней стороне добовочный сустав на-
ходится в низко-высоком состоянии. Воротников отсутствует.

P_4 по строению напоминает M_1. Протоконик имеет почти те-
жу же длину, как и пароконик, но значительно выше и вершина
его наклонена назад. Метаконик в толще хорошо развиты. Последний
обладает зубчик и, метаконик расположен у заднего края
протоконика.

P_3 и P_4 (рис. 30, о). P_3 с низкой и узкой, относительно длин-
ной коронкой. Добовочный сустав хорошо развит на задней и од-
нако прямый на передней стороне. Воротников резко выражено
на задней стороне, где образует широкую пятку. В связи с этим
задняя часть зуба значительно шире передней, коронка в сечении
трехугольная. P_3 сильно редуцирован, отношение длина к диа-
метру P_4 около 65-70%.

P_4 в полотнах разы более P_3, добовочные суставы хорошо
развиты как на передней, так и на задней стороне. Воротников
резко выражены на задней стороне, где образует широкую пятку. В
отличие P_3 коронка имеет в сечении неравномерную треугольную
форму. На P_3 и P_4 добовочные суставы отделены от главного ко-
роны хорошо выраженным волокном. От вершины заднего добовоч-
ного сустава к заднему краю протягивается продольный гребень.
<table>
<thead>
<tr>
<th>Промеры верхних и нижних зубов</th>
<th>M. panamiri (Oman.)</th>
<th>M. percarus (Seych.)</th>
<th>M. africanus (Az.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Промеры, мм</td>
<td>Палео, Межд.</td>
<td>Турции (по Оксину, 1965)</td>
<td>(по Талки, 1961)</td>
</tr>
<tr>
<td>C Длина</td>
<td>11,5</td>
<td>10,3</td>
<td>12,9</td>
</tr>
<tr>
<td>C Ширина</td>
<td>8,0</td>
<td>7,1</td>
<td>6,9</td>
</tr>
<tr>
<td>P3 Длина</td>
<td>-</td>
<td>12,5</td>
<td>13,5</td>
</tr>
<tr>
<td>P3 Ширина</td>
<td>-</td>
<td>5,5</td>
<td>6,7</td>
</tr>
<tr>
<td>P4 Длина</td>
<td>-</td>
<td>20,6</td>
<td>21,4</td>
</tr>
<tr>
<td>P4 Ширина</td>
<td>-</td>
<td>9,2</td>
<td>9,5</td>
</tr>
<tr>
<td>Отношение длин</td>
<td>-</td>
<td>60,0</td>
<td>64,3</td>
</tr>
<tr>
<td>P3 к P4</td>
<td>-</td>
<td>10,1</td>
<td>10,1</td>
</tr>
<tr>
<td>M Длина</td>
<td>-</td>
<td>4,1</td>
<td>3,5</td>
</tr>
<tr>
<td>M Ширина</td>
<td>-</td>
<td>9,3</td>
<td>6,6</td>
</tr>
<tr>
<td>С Длина</td>
<td>-</td>
<td>9,1</td>
<td>10,1</td>
</tr>
<tr>
<td>С Ширина</td>
<td>-</td>
<td>6,6</td>
<td>6,8</td>
</tr>
<tr>
<td>Отношение длин</td>
<td>-</td>
<td>88,0</td>
<td>70,0</td>
</tr>
<tr>
<td>P3/P4</td>
<td>-</td>
<td>10,1</td>
<td>10,1</td>
</tr>
<tr>
<td>М Длина</td>
<td>16,0</td>
<td>17,0</td>
<td>17,8</td>
</tr>
<tr>
<td>М Ширина</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
</tbody>
</table>

М1. Передняя часть коронки (пароконий) разрушена. Протоконий широкий и низкий. Имеется хорошо развитый талоний и слегка редуцированный метаконий, расположенный на заднем крае предтокония. Эмаль постоянных зубов мезокорониевых.

Но постепенноского скелета в комплексе представлены только первой и второй фаланг пальцев. Они укорочены, массивные и по строению и размерам близки к пальцам и пальцам.

| Таблица 19 |
|---|---|---|
| Промеры I и II фаланг | Промеры, мм | I | II |
| Промеры, мм | | | |
| Длина по наружной поверхности | 17,0; 19,0 | 10,0; 12,0 |
| Передне-задний x медиально-латеральный поперечник проксиимального конца | 7,8 x 8,9 | 5,5 x 6,6 |
| Передне-задний x медиально-латеральный поперечник дистального конца | 5,6 x 5,0 | 4,4 x 5,0 |

Зав. 293

113
из среднего сина с Тури (P. Oscauso, 1985). Поэтому мы относим
остатки Metalilurus из среднего сина Маджидии к M. paniri.

Особенности строения зубов и нижней челюсти (сильно редукция F3, крупные размеры P4, укороченная дикало и др.) M. paniri указывают на некоторую его специализацию. Во вне
особенности (отчетливые бугры и зубовидной формы P3 на P4, метаконидия и тахисидия на M1, слизистые, как завершенно на M2, а также глухой на сильно вытянутый вперед мезоверхняк языка) характеризуют M. paniri как амфибийное отоб. по сравнению с поздним видами рода Metalilur-
rus и сближает его с P. quadridentatus.

Геологические и геохронологические отложения. а) Сред-
ний син, нижний стратиграфический уровень; с.Караб, Новоза-
менное район; с. средний син, Турция.

Материал. Правая ветвь нижней челюсти с P4 и P4,
и M1, изолированные P3 и P4, верхний язык, фрагмент пальца -
4 экз. Кол. ТГУ №1 (2271 - 228).

Замечания. Род Metalilurus впервые был описан Зламским
(O. Zlamsky, 1924) на плиоценовом гиппарнообразной фауне Антаг. После его описания были обнаружены в среднем миоценовом отлож-
еннях Монголии (Tung-sa-I) (S. Colbert, 1933), а связь с чем-то
род считается характерным для миоценовой фауне Азии. В настояще
время остатки Metalilurus известны также в различ
ных местонахождениях гиппарнообразной фауне верхнего миоцена

Многие палеонтологи (O. Zlamsky, 1924; S. Colbert, 1933;
J. Wers, 1961; L. Linsburg, 1961; O. Beausont, 1961; R. Savage,
1965) рассматривают Metalilurus как амфибийное отоб. с.
форму, которые генетически связаны с родом Pseudaelurus. Однако го-
встречное полоение рода Metalilurus пока спорно.

В последнее время (M. Cruensfont-Paimo et al., 1972) выделено новое подотряд Metalilurinae с типовым родом Metalilurus zala. По мнению этих авторов, подотряд Metalil-
rus занимает промежуточное положение между подотрядами-
ми Mecharidontinae и Felinae.

Metalilurus известен уже в конце среднего миоцена как
специализированный вид (S. Colbert, 1933; R. Savage, 1965). По сравнению с Pseudaelurus, у Metalilurus появляется ряд
прогрессивных признаков в строении зубов: полная редукция P1
и P2, уменьшение размеров P3, редукция метаконида и талонида на M1, удлинение P4 и парастиль на P4.

Metalilurus является одним из видов тетраподной фаун,
сходной с Pseudaelurus и P. quadridentatus. Однако, M. paniri Codo-
тельно редуцирован по переходной форме от Pseudaelurus к Metalil-
rus. Такие формы рода Metalilurus видимо, появляются в насекомой
фауне Евразии в конце среднего миоцена.

Среднемиоценовый Metalilurus paniri представляет собой
археологическую форму, но в общий вид миоценовых форм мета-
лируса, имеющих ряд археологических признаков, обнаруживаемых в среднем миоценовом P. quadridentatus. Однако, M. paniri следует
рассматривать как переходную форму от Pseudaelurus к Metalil-
rus. Такие формы рода Metalilurus видимо, появляются в насекомой
фауне Евразии в конце среднего миоцена.

Среднемиоценовый металлируса представлял собой кусок сред-
них размеров с укороченными конечностями и мордой. Тенюс
(E. Tholus, 1961) отмечает, что такое строение металлируса по
сравнению с современными формами, в целом, характерно для миоцена. Но Гейл (G. Linsburg, 1961), научный костяк геохронологического скелета P. quadridentatus из среднего миоцена
северной Евразии, приходится к выводу, что эти окаменелости относятся к среднемиоценовым формам, которые, как отмечено выше, были близки к P. quadridentatus. Ва-
роплипиды, характерные для среднемиоценовых форм, являются
средними размеров. Однако, длина среднего синьета занимает левые конечности с густым подъемом и бутом, в которой окаменелые экземпляры не могут быть сходными с какими-либо другими видами это.

Линии среднего синьета с низким систематическим поло-
жением. Выше описаны остатки динозавров, собранных в местона-
хождении среднемиоценового гиппарнообразной фауне в среднем миоценах, а также в среднем миоценовой Оби. Кроме того, в среднемиоценовых формах известны кости костей, какие были описаны Thalassicetus robustus
Nord, Ichitheraul serraticum Pav. и Lutra pontica Nord.

На основе сравнительных исследований Испания (M. Crusensfont-Paimo, 1950).
Исследование остатков хищников, описанных М.В. Павловым (M. Pavlov, 1906), а также знакомство с работами Нордмана (1886) и Куртена (B. Kuren, 1964) показали, что Ictitherium carpathicum может относиться к Thalassictis robusta, так как отличия между ними не отмечены.

Особенности строения нижней челюсти и зубного аппарата (строение таширида на M₁, длинный мезотрикс и форма протокона на P₁, расположение краевых размеров M₁ и M₂ и другие пропорции зубов) указывают на близкое сходство Thalassictis robusta с Progenetta certa major и возможное наличие между ними филогенетических связей. Вместе с тем наблюдаемые и другие признаки в морфологии и строении зубов Thalassictis robusta (направленные коронки, относительно низкий состав на M₁ и M₂ и др.), которые обнаруживают его с Ictitherium viverrinus. Вероятно, Thalassictis robusta занимает промежуточное положение между P. certa и I. viverrinus. Однако сенсационное положение этой формы остается спорным и трудно решить, является она Progenetta или Ictitherium или же представляет самостоятельный род. Пилгрим (G. Pilgrim, 1931) рассматривал орнитопсихарную форму как самостоятельный род и в его систематике относил род Progenetta, ставя, что он все еще не был определен нами, чем Thalassictis. Но для окончательного решения этого вопроса нужны дополнительные материалы.

Некоторые особенности систематического состава Схемы хищных млекопитающих Среднего Памира. Известные остатки ещё не дают нам полного представления об останках хищных млекопитающих Среднего Памира. Из табл. 19 видно, что в местонахождениях срединного Памира встречается большое количество останков хищных млекопитающих срединного времени. Из табл. 19 видно, что в местонахождениях срединного Памира встречается большое количество останков хищных млекопитающих срединного времени.

Таблица 20

<table>
<thead>
<tr>
<th>Видовой состав</th>
<th>Количества остатков</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Семейство Musielidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protororius aff. medium Petter</td>
<td>-</td>
<td>I</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pleistocoptus aff. echinatus (Schlosser)</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selenictus pisanes (Osansoy)</td>
<td>18 3</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prometis sp.</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Семейство Hyaenidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progenetta taurica (Borissiak)</td>
<td>100 10</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Progenetta montanae vallesiensis (Crusafont-Paire)</td>
<td>4 1</td>
<td>1</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pericrocuta robusta Lungu sp. nov.</td>
<td>48 8</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pericrocuta gigantea (Schlosser)</td>
<td>-</td>
<td>7</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Семейство Felidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sancanosius pisanes (Osansoy)</td>
<td>10 2</td>
<td>10</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Machairodus laskevi Lungu sp. nov.</td>
<td>13 2</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudalunus turnauensis (Hoerns)</td>
<td>2 2</td>
<td>I</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudalunus sp.</td>
<td>8</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalurus panther (Osansoy)</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

I - количество остатков; **II** - количество особей.

Значит в среднем Памире в верхнего олигоцене (Гребенники, Чобруки - УССР) и местности (Тарасия, Чимэа; Иванов-Велесовка - УССР).

Такой состав исследованных видов млекопитающих в местонахождениях гиппарновой фауны Южно-Восточной части СССР не случай, а, по-видимому, связан с условиями жизни различных видов и характером ландшафтов изучаемой территории. В среднем Памире местонахождениями как в верхнем олигоцене, так и в срединном времени отмечены предполагаемые предшественниками из семейства Hyaenidae: Thalassictis robustum, Progenetta taurica, P. montanae vallesiensis, Pericrocuta robusta, P.
gigantea, а также Homalivora pivea. In cultures. Вся она охотилась на сладк и молодых травоядных животных, но основу их питания составляли падеж и остатки добычи различных кошачьих (Sananomus, Machairodus, Pseudacorus, Metalurus и др.). Последние представлены большим числом видов, хотя по количеству остатков и особенно значительному уступают гиенам.

Большинство изученных средносарматских хищников не были приурочены к определенным скотопод, а в небольших, видимо, разнообразные экологические стадии. Также формы, как Progenetta taurica, P. montada, vallesiensis, Thalassictis robustum, P. gigantea, Machairodus laskev, Propuratorius aff. media, Pleiosguo brevigratus могли быть обитателями более открытых и снеговых пространств, а также увлажненных пойм и побережий, где преследовали свою жертву. Но такие формы, как Promelles sp., Pseudacorus turnaeus, Pseudalurus sp., Metalurus pemiri, Sananomus pivea, особенно обычны в более лесистых участках средносарматского ландшафта — в лесных и приречных лесах, болотах водоемов, в угодьях для подкармливания добычи в зарослях кустарников и кустов.

Как по отношению к среднему положению, так и в систематическом отношении фауна хищников среднего сарматского времени представляет большой интерес прежде всего в том смысле, что она содержит в своем составе высокопредставительные формы и вместе с тем характеризуется разнообразием видов, которые обнаруживают близкое сходство со средненогомиевыми хищниками. Такие формы, как Thalassictis robustum, Progenetta taurica, P. montada, vallesiensis, Sananomus pivea, Pseudacorus turnaeus, Metalurus pemiri, привлекают особую внимание своей гибелью и эволюционной стадией, где они являются основными представителями Progenetta etra, P. rossica, P. montada, Sananomus (Albanaiulus) jordani, Pseudalurus quadridentatus.

Но такие формы, как Pleiosguo brevigratus, Homalivora pivea, Pseudacorus gigantea, Machairodus laskev, вероятно, нуждаются в дальнейшем изучении, и мы надеемся, что в будущем их изучение позволит нам получить больше информации об этих интересных и уникальных формах.
ЗАКЛЮЧЕНИЕ

Остатки самой древней гиппарционовой фауны на территории Молдавии приурочены к верхней части среднесарматского разреза и встречаются в различных фашиях: морских, алевролитовых, дельтовых и речных. Они известны из многочисленных местонахождений, относящихся к двум стратиграфическим уровням и принадлежащих двум фаунистическим комплексам. Наиболее ранний из них предположительно назван кафтинским, а более поздний — воронским.

Кафтинский комплекс гиппарционовой фауны характерен для нижнего стратиграфического уровня, который представляет собой верхнюю часть среднего горизонта среднего сарматта. В составе этого комплекса преобладают формы, приспособленные к жестким условиям обитания, в осесложенных и заболоченных ландшафтах.

Воронский фаунистический комплекс характерен для верхнего стратиграфического уровня, относящегося к верхнему горизонту среднего сарматта. Фауна этого комплекса в отличие от кафтинского сформировалась в условиях, менее жестких, что привело к появлению более широкого ассортимента видов и видов.

Анализ состава наземной фауны и форм их обитания показывает, что территории Донузлава и Керчи в среднесарматское время были слабо развиты и характеризовались низкой плотностью населения и отсутствием интенсивной хозяйственной деятельности.

Сравнение кафтинского и воронского комплексов гиппарционовой фауны показывает, что в конце среднесарматского времени произошли изменения в климате, приведшие к сокращению обитаемых и обесценивших ландшафтов и увеличению открытых пространств лесостепного и степного типа. Это привело к возрастанию в составе наземной фауны. Многие формы, характерные для гиппарционовой фауны кафтинского комплекса, исчезли и появились более специализированные элементы, приспособленные к жизни в более открытых пространствах и менее влажных условиях. Изменение природной обстановки в конце среднесарматского времени усилило проникновение эпизодов азиатской фауны, которые проникали на территорию юго-западной части СССР.

Первые гиппароны появились на территории Молдавии в середине среднего сарматта. Среднесарматская гиппарционовая фауна состоит из автохтонных элементов, приходящих к ней более позднее, а также археологических обсидианов, а азиатских форм. На протяжении среднесарматского времени наблюдается определение азиатских эмиссий; первая относится к середине среднего сарматта и характеризуется появлением в наземной фауне юго-западной части СССР первых гиппаронос и других элементов азиатской фауны; вторая волна имела место в конце среднего сарматта.

По систематическому составу гиппарционовая фауна среднего сарматта обнаруживает сходство с гиппарционовыми фаунами раннего "петца" (в широком понимании) Венгрии, раннего и среднего нашествия Босния-Боснии-Боснии, раннего "петца" и среднего "петца" Испании и среднего "петца" Турции.

Гиппарционовая фауна Молдавии наиболее близка к раннесарматско-эпизоидной фауне Испании, но отличается от нее наличием большего процента азиатских элементов. В связи с этим важно учесть вклад вапитопод гиппарционовую фауну западного восточного сарматта.

Отсутствует в наземной фауне среднего ордова создававшихся представителей семейства Ganidae и Urvida, что, вероятно, связано с ландшафто-климатическими условиями.

Также формы, как Protorius medius, Prognetta taurica, Sannosmilus pivezaui, Fossaelurus (Shimahirnus) turnuans, являются антготонными и придают среднерастворимо. Фауне более древних обитателей, a Romellivora pivezaui, Pleoconula bra-

чонелмн, Percocota gigantea, Machairoides laskarevi, M. terrigera в среднем ордова не были известны. В миае среднерастворимого времени некоторые представители хищных млекопитающих: (Prognetta taurica, P. montsinae vallesiensis, Sannosmilus pivezaui и др.) вымирают. Это связано с изменением природных обстановок и появлением более специализированных форм хищных млекопитающих.

ЛИТЕРАТУРА

Алексеев А. К. 1815. Фауна позвоночных. Нов.-Елизаветовка, Одесса.

Богачев В. В. 1877. Палеонтологические заметки о фауне Зверебо. Изв. о-ва обсерв. и науч. Азербайджана, № 5.

Борисов А. А. 1915. Севастопольская фауна мlekопитающих. Труды Геол. комитета. Нов. сер., т. 157, вып. .9.

Векуа А. К. 1972. Каменноугольная фауна восточноазиатских позвоночных. М., "Наука".

Габуния Л. Н. 1959. К истории гиперрионов. М., Нед. во АН СССР.

Габуния Л. Н. 1973. Болометатская фауна палеозойских позвоночных. Томики, "Междуречье".

Гаджиев Д. В. 1981. Зверебоевская верхненаствармская гиперрионовая фауна. Автореф. докт. дис. Баку.

Година Л. Я. О находках жирафа рода Palaeotragus из среднерастворимых отложений Мадагаскара. Изв. АН СССР, № 7.

Громова В. И. 1960. Определитель млекопитающих СССР по костям скелета. Труды комиссии по изучению четвертичного периода, т. 16, вып. 2. М.

Громова В. И. 1962. Machaerocininae. — В кн.: Основы палеонтологии. Молдавия. М., "Наука".

Ефремов Н. А. 1950. Палеонтология и геологическая география. Труды ИГАН АН СССР, т. 24.

Коньков В. И. 1997. О распространении фауны наземных позвоночных в верхнем миоцене Казахстана СССР. Изв. Молд. фил. Ак АН СССР, № 2 (6).

Крокос В. 1939. Жизнь с местным вкладом в. Геол. журн. АН УССР, т. 1, № 1—2.
Куров П. А. 1941. Третичные хищники Западной Сибири. Труды ПИН АН СССР, т.8, вып.3.
Орлов В. А. 1947. Pteropus, новое подсемейство мурниц меловых местонахождений. Труды ПИН АН СССР, т.10, вып.3.
Роял В. Х. 1964. Неволи — В кн.: Стратиграфия осадочных отложений Молдавии. Книжник, "Карта Молдовеняско"
Руднева М. М., Радуня Я. К. 1972. Некоторые вопросы геохронологии кайнозоя. Изв. АН СССР, сер. геол., т. 3.
Рябова А. И. 1929. Основные фауны меловых местонахождений. Труды геологического музея АН СССР, т.5.
Сухов И. М. 1965. О наличии переплывов в отложениях средневоевского подъяруса в речке т. Кинаевка. Уч. зап. Киневского геол. ун-та, т.10.
Соколов К. К. 1962. Об основных направлениях экологической геологии земной поверхности. Изв. АН СССР, т.5.
Хоменко И. А. 1974. Местообитания фауны о. Таранка. Бюллетень Петербургского университета. Труды Биржевого сообщества, т.5.
Зубан В. А. 1965. Основные закономерности формирования местонахождений меловых отложений русской платформы. Изв. АН СССР, т. 4.
Сборник А. И. 1950. О стратиграфии и структурообразовании местонахождений русских типов. Молдавская Народно-Советская Республика, т.75, вып. 2.
Сборник А. И. 1961. О континентальных фаун и флоре Молдавии. Изв. АН СССР, т. 77, вып. 5.
Устимовичи Т. А. 1960. О новых находках сарматской флоры в Молдавии. Ботанический журнал, т. 35, вып. 5.

Cruasfont-Pairó M. 1952. La presencia del Felis de Pseudaelurus taurumalis (Hoernes) en el Mioceno de Hostalet de Pierola y Sabadell (Valles-Penedés). Notas y Comun. Inst. Geol. y Minero de España, 28.

Deperet Ch. 1892. La faune des Mammifères miocènes de la Grive-St-Alban. Arch. Mus. Lyon, 5.

Таблица I. Smellivora pivevaui Ozan., 1 - верхние зубы (P4 и M4); 2 - фрагмент верхней челюсти с C, P3 - P4; 3 - верхняя резцовая часть; 4 - фрагмент правой ветви нижней челюсти с M1; 5 - фрагмент левой ветви нижней челюсти с C, P3 - M1; 6 - фрагмент левой ветви нижней челюсти с I2, I3, C, P3 и P4. Fissigulo aff. brachignathus (Schl.); 7 - фрагмент левой ветви нижней челюсти с P2 - M1 (x 2); 8 - верхний M4.

Таблица II. Progenetta taurica (Boris.), 1 - фрагмент верхней части; 2 - верхний M4; 3 - левая ветвь нижней челюсти с P2 - M1; 4 - фрагмент правой ветви нижней челюсти с C, P3 - M1; 5 - левая ветвь нижней челюсти с I2, C, P3 - M1; 6 - левая ветвь нижней челюсти с P2 - M1.

Таблица III. Progenetta montanae vallensiensis (Cru.-saf.) 1 - фрагмент нижней челюсти с P2 - M1; 2 - верхние зубы (a - P2; b - P4); 3 - M1. Ferrococuta robusta Lungu sp. nov.; 4 - верхний P4; 5 - верхний рад коренных зубов (P4 - P4); 6 a, b - нижний M1 (внутри); 7 a, b - нижний M1 (снаружи); 8 - верхний клык.

Таблица IV. Ferrococuta robusta Lungu sp. nov.; 1 - левая ветвь нижней челюсти сверху (a) и снаружи (d) (x 4/5).

Таблица V. Ferrococuta gigantea (Schl.); 1 - верхний P4 (a - сверху; b - снаружи); 2 - образец верхней резцовой части с I2; 3 - фрагмент правой ветви нижней челюсти с P4 и P3; 4 - нижний M1; 5 - надкрыльная кость.

Таблица VI. Sansanodonalis pivevaui (Ozan.); 1 - фрагмент верхней челюсти с P3, C, P3 и P4; 2 - верхний клык; 3 - фрагмент верхней челюсти с P3 и P4 (a - внутри; b - снаружи); 4 - сильно оторванный P4 (снаружи); 5 a, b - нижний клык; 6 - нижний P4.
Таблица VII. *Eremopterus* pivozoi (Ozan.): 1 - надкрылья; 2 - MC IV, *Machairodus* laskarevi Luscu sp. nov.; 3 - нижняя челюсть; 4 - нижний язык.

Таблица VIII. *Machairodus* laskarevi Luscu sp. nov.: 1 - правая ветвь нижней челюсти с M₃ (α - снаружи, β - снаружи); 2 - дистальные концы метаподий; 3 - первая фаланга; 4, α, β - вторые фаланги.

Таблица IX. *Pseudoalthea* (Schizalthea) burmaensis (Hagen.): 1 - фрагмент левой ветви нижней челюсти с P₂ и P₃; 2 - фрагмент левой ветви нижней челюсти с P₃ - M₁, *Pseudoalthea* sp.; 3 - фрагмент правой ветви нижней челюсти с M₃, *Heterolthea* rakiti (Ozan.); 4 - правая ветвь нижней челюсти с P₄, P₅ и M₁; 5 - нижние P₃ и P₄; 6 - верхний язык.
ОГЛАВЛЕНИЕ

Предисловие .. 3
Глава I. Стратиграфический обзор сарматских отложений Молдавии ... 6
Глава II. Таксономия среднесарматских местонахождений гиппарионовой фауны ... 12
Глава III. Анализ систематического состава гиппарионовой фауны среднего Сарматова ... 30
Глава IV. Систематическая часть, плацентарные млекопитающие .. 37
Семейство Mustelidae .. 41
Семейство Hyaenidae .. 51
Некоторые особенности развития миоценовых гнёзд Старого света .. 61
Семейство Felidae .. 86
Заключение ... 120
Литература .. 123
Палеонтологические таблицы и объяснения к ним .. 132

Александр Николаевич Лунгу
ГИППАРИОННАЯ ФАУНА СРЕДНЕГО САРМАТА МОЛДАВИИ
(хищные млекопитающие)

Утверждено к изданию Ученым советом
Татарского государственного педагогического института им. Т.Г. Левченко

ИБ № 516

Редактор Г.С. Гайчурин
Любовь Григорьевна редактор В.М. Винко
Технический редактор И.Н. Константинова
Корректоры А.Ф. Лутузов, С.Н. Карта-Иван
Оператор-наладчик В.П. Горбатый

Подписано в печать 5.II.1976. АН 042-27. Формат 60х90 И/16. Гл.
масса офсетная 15. Л. печ. л. 240. Бл. 266. Уч.-изд. л. 7,63
+0,55 вкл. 6,18. Тираж 250. Заказ 293. Цена 1р. 20к.
Издательство "Штиница", 277026, Кишинев, ул. Академическая, 3
Типография издательства "Штиница", 277026, Кишинев, ул. Б. Берзашина, 10.